Adaptive Neural-Network-Based Fault-Tolerant Control for a Flexible String With Composite Disturbance Observer and Input Constraints

We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 12; pp. 12843 - 12853
Main Authors Zhao, Zhijia, Ren, Yong, Mu, Chaoxu, Zou, Tao, Hong, Keum-Shik
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose an adaptive neural-network-based fault-tolerant control scheme for a flexible string considering the input constraint, actuator gain fault, and external disturbances. First, we utilize a radial basis function neural network to compensate for the actuator gain fault. In addition, an observer is used to handle composite disturbances, including unknown approximation errors and boundary disturbances. Then, an auxiliary system eliminates the effect of the input constraint. By integrating the composite disturbance observer and auxiliary system, adaptive fault-tolerant boundary control is achieved for an uncertain flexible string. Under rigorous Lyapunov stability analysis, the vibration scope of the flexible string is guaranteed to remain within a small compact set. Numerical simulations verify the high control performance of the proposed control scheme.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3090417