Decentralized Robust Portfolio Optimization Based on Cooperative-Competitive Multiagent Systems

This article addresses decentralized robust portfolio optimization based on multiagent systems. Decentralized robust portfolio optimization is first formulated as two distributed minimax optimization problems in a Markowitz return-risk framework. Cooperative-competitive multiagent systems are develo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 12; pp. 12785 - 12794
Main Authors Leung, Man-Fai, Wang, Jun, Li, Duan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article addresses decentralized robust portfolio optimization based on multiagent systems. Decentralized robust portfolio optimization is first formulated as two distributed minimax optimization problems in a Markowitz return-risk framework. Cooperative-competitive multiagent systems are developed and applied for solving the formulated problems. The multiagent systems are shown to be able to reach consensuses in the expected stock prices and convergence in investment allocations through both intergroup and intragroup interactions. Experimental results of the multiagent systems with stock data from four major markets are elaborated to substantiate the efficacy of multiagent systems for decentralized robust portfolio optimization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3088884