Individual Muscle Force Differences During Loaded Hexbar Jumps: A Statistical Parametric Mapping Analysis

Knowledge of individual muscle force during strength and conditioning exercises provides deeper understanding of how specific training decisions relate to desired training outcomes. The purpose of this study was to estimate individual muscle forces during hexbar jumps with 0%, 20%, 40%, and 60% of t...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 51; no. 9; pp. 1975 - 1983
Main Authors Salvadore, Abigail K., Jagodinsky, Adam E., Torry, Michael R.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Knowledge of individual muscle force during strength and conditioning exercises provides deeper understanding of how specific training decisions relate to desired training outcomes. The purpose of this study was to estimate individual muscle forces during hexbar jumps with 0%, 20%, 40%, and 60% of the hexbar deadlift 1-repetition maximum utilizing in vivo motion capture and computational modeling techniques of male participants. Muscle forces for the gluteus maximus, biceps femoris, rectus femoris, vastus intermedius, gastrocnemius, and soleus were estimated via static optimization. Changes in muscle forces over the concentric phase were analyzed across loading conditions using statistical parametric mapping, impulse, and peak values. Conclusions about the effects of load differ between the three analysis methods; therefore, careful selection of analysis method is essential. Peaks may be inadequate in assessing differences in muscle force during dynamic movements. If SPM, assessing point-by-point differences, is combined with impulse, where time of force application is considered, both timepoint and overall loading can be analyzed. The response of individual muscle forces to increases in external load, as assessed by impulse and SPM, includes increased total muscle output, proportionally highest at 20%1RM, and increased absolute force for the vasti and plantarflexors during the concentric phase of hexbar jumps.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0090-6964
1573-9686
DOI:10.1007/s10439-023-03218-w