Command State-Based Modifiable Walking Pattern Generation on an Inclined Plane in Pitch and Roll Directions for Humanoid Robots
Previous research related to walking on an inclined plane for humanoid robots, including the 3-D linear inverted pendulum model (3D-LIPM) approach, were unable to modify walking period, step length, and walking direction independently without any additional step for adjusting the center of mass (CoM...
Saved in:
Published in | IEEE/ASME transactions on mechatronics Vol. 16; no. 4; pp. 783 - 789 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Previous research related to walking on an inclined plane for humanoid robots, including the 3-D linear inverted pendulum model (3D-LIPM) approach, were unable to modify walking period, step length, and walking direction independently without any additional step for adjusting the center of mass (CoM) motion. Moreover, the inclination along the pitch direction was only considered for walking. To solve these problems, a novel command state (CS)-based modifiable walking pattern generator for humanoid robots is proposed for modifiable walking on an inclined plane in both pitch and roll directions. The dynamic equation of the 3D-LIPM on the inclined plane in both pitch and roll directions is derived to obtain the CoM motion. Using the CoM motion, a method for modifiable walking pattern generation on the inclined plane is developed to follow a given CS composed of walking periods, step lengths, and walking directions for both legs. The effectiveness of the proposed walking pattern generator is demonstrated through both simulation and experiment for the small-sized humanoid robot, HanSaRam-IX (HSR-IX). |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1083-4435 1941-014X |
DOI: | 10.1109/TMECH.2010.2089530 |