Separation of Follicular Cells and Oocytes in Ovarian Follicles of Zebrafish

Zebrafish has become an ideal model to study the ovarian development of vertebrates. The follicle is the basic unit of the ovary, which consists of oocytes and surrounding follicular cells. It is vital to separate both follicular cells and oocytes for various research purposes such as for primary cu...

Full description

Saved in:
Bibliographic Details
Published inJournal of visualized experiments no. 170
Main Authors Wang, Wenyi, Kang, Tao, Bai, Lin, Hu, Wei, Obata, Yayoi, Li, Jianzhen
Format Journal Article
LanguageEnglish
Published United States 18.04.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Zebrafish has become an ideal model to study the ovarian development of vertebrates. The follicle is the basic unit of the ovary, which consists of oocytes and surrounding follicular cells. It is vital to separate both follicular cells and oocytes for various research purposes such as for primary culture of follicular cells, analysis of gene expression, oocyte maturation and in vitro fertilization, etc. The conventional method uses forceps to separate both compartments, which is laborious, time consuming and has high damage to the oocyte. Here, we have established a simple method to separate both compartments using a pulled glass capillary. Under a stereomicroscope, oocytes and follicular cells can be easily separated by pipetting in a pulled fine glass capillary (the diameter depends on the follicle diameter). Compared with the conventional method, this new method has high efficiency in separating both oocytes and follicular cells and has low damage to the oocytes. More importantly, this method can be applied to early-stage follicles including at the pre-vitellogenesis stage. Thus, this simple method can be used to separate follicular cells and oocytes of zebrafish.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ISSN:1940-087X
1940-087X
DOI:10.3791/62027