Adaptive Neural-Network Boundary Control for a Flexible Manipulator With Input Constraints and Model Uncertainties

This article develops an adaptive neural-network (NN) boundary control scheme for a flexible manipulator subject to input constraints, model uncertainties, and external disturbances. First, a radial basis function NN method is utilized to tackle the unknown input saturations, dead zones, and model u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 51; no. 10; pp. 4796 - 4807
Main Authors Ren, Yong, Zhao, Zhijia, Zhang, Chunliang, Yang, Qinmin, Hong, Keum-Shik
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article develops an adaptive neural-network (NN) boundary control scheme for a flexible manipulator subject to input constraints, model uncertainties, and external disturbances. First, a radial basis function NN method is utilized to tackle the unknown input saturations, dead zones, and model uncertainties. Then, based on the backstepping approach, two adaptive NN boundary controllers with update laws are employed to stabilize the like-position loop subsystem and like-posture loop subsystem, respectively. With the introduced control laws, the uniform ultimate boundedness of the deflection and angle tracking errors for the flexible manipulator are guaranteed. Finally, the control performance of the developed control technique is examined by a numerical example.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3021069