Optimal Power Allocation With Statistical QoS Provisioning for D2D and Cellular Communications Over Underlaying Wireless Networks

By enabling two adjacent mobile devices to establish a direct link, device-to-device (D2D) communication can increase the system throughput over underlaying wireless networks, where D2D and cellular communications coexist to share the same radio resource. Traditional D2D schemes mainly focus on maxi...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 34; no. 1; pp. 151 - 162
Main Authors Cheng, Wenchi, Zhang, Xi, Zhang, Hailin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By enabling two adjacent mobile devices to establish a direct link, device-to-device (D2D) communication can increase the system throughput over underlaying wireless networks, where D2D and cellular communications coexist to share the same radio resource. Traditional D2D schemes mainly focus on maximizing the system throughput without taking into account the quality-of-service (QoS) provisioning. To overcome this problem, we develop a framework to investigate the impact of delay-QoS requirement on the performance of D2D and cellular communications in underlaying wireless networks. Then, we propose the optimal power allocation schemes with statistical QoS provisioning for the following two channel modes: 1). co-channel mode based underlaying wireless networks where D2D devices and cellular devices share the same frequency-time resource; 2). orthogonal-channel mode based underlaying wireless networks where the frequency-time resource is partitioned into two parts for D2D devices and cellular devices, respectively. Applying our proposed optimal power allocations into D2D based underlaying wireless networks, we obtain the maximum network throughput subject to a given delay-QoS constraint for above-mentioned two underlaying wireless network modes, respectively. Also conducted is a set of numerical and simulation results to evaluate our proposed QoS-driven power allocation schemes under different delay-QoS requirements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0733-8716
1558-0008
DOI:10.1109/JSAC.2015.2476075