Neuroadaptive Finite-Time Control for Nonlinear MIMO Systems With Input Constraint

This article considers the problem of finite-time (FT) tracking control for a class of uncertain multi-input-multioutput (MIMO) nonlinear systems with input backlash. A modified FT command filter is designed in each step of backstepping, which ensures the output of the filter can faster approximate...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 7; pp. 1 - 8
Main Authors Yu, Jinpeng, Shi, Peng, Liu, Jiapeng, Lin, Chong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article considers the problem of finite-time (FT) tracking control for a class of uncertain multi-input-multioutput (MIMO) nonlinear systems with input backlash. A modified FT command filter is designed in each step of backstepping, which ensures the output of the filter can faster approximate the derivatives of virtual signals, suppress chattering, and relax the input signal limit of the Levant differentiator. Then, the corresponding improved FT error compensation mechanism is adopted to reduce the negative impact of filtering errors. Furthermore, a neural-network-adaptive technology is proposed for MIMO systems with input backlash via FT convergence. It is shown that desired tracking performance can be implemented in finite time. The simulation example is presented to illustrate the effectiveness and advantages of the new design method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3032530