Interstitial flow, pressure and residual stress in the aging carotid artery model in FEBio

Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial flu...

Full description

Saved in:
Bibliographic Details
Published inBiomechanics and modeling in mechanobiology Vol. 23; no. 1; pp. 179 - 192
Main Authors Altundemir, Sercan, Lashkarinia, S. Samaneh, Pekkan, Kerem, Uğuz, A. Kerem
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82–158 kPa) and lower on the intima and adventitia (19–23 kPa and 25–28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1617-7959
1617-7940
DOI:10.1007/s10237-023-01766-7