Thread-powered cell lysis and isotachophoresis: unlocking microbial DNA for diverse molecular applications

Central to the domain of molecular biology resides the foundational process of DNA extraction and purification, a cornerstone underpinning a myriad of pivotal applications. In this research, we introduce a DNA extraction and purification technique leveraging polypropylene (PP) threads. The process c...

Full description

Saved in:
Bibliographic Details
Published inWorld journal of microbiology & biotechnology Vol. 40; no. 3; p. 97
Main Authors Garg, Rishabh, Maurya, Aharnish, Mani, Naresh Kumar, Prasad, Dinesh
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Central to the domain of molecular biology resides the foundational process of DNA extraction and purification, a cornerstone underpinning a myriad of pivotal applications. In this research, we introduce a DNA extraction and purification technique leveraging polypropylene (PP) threads. The process commences with robust cell lysis achieved through the vigorous agitation of interwoven PP threads. The friction between the threads facilitates cell lysis especially those microbes having tough cell wall. For purification of DNA, thread-based isotachophoresis was employed which makes the whole process swift and cost-effective. Lysed cell-laden threads were submerged in a trailing electrolyte which separated DNA from other cellular contents. The process was performed with a tailored ITP device. An electric field directs DNA, cell debris, trailing electrolyte, and leading electrolyte toward the anode. Distinct ion migration resulted in DNA concentrating on the PP thread’s anode-proximal region. The SYBR green dye is used to visualize DNA as a prominent green zone under blue light. The purified DNA exhibits high purity levels of 1.82 ± 0.1 (A 260 /A 280 ), making it suitable for various applications aiming at nucleic acid detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0959-3993
1573-0972
DOI:10.1007/s11274-024-03906-2