A review of railway infrastructure monitoring using fiber optic sensors
[Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitori...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 303; p. 111728 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 1873-3069 |
DOI | 10.1016/j.sna.2019.111728 |
Cover
Loading…
Abstract | [Display omitted]
•Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitoring is briefly discussed.•Aspects of the FOS design, installation, performance/accuracy, signal processing and data analysis algorithms are discussed.
In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed. |
---|---|
AbstractList | In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed. [Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitoring is briefly discussed.•Aspects of the FOS design, installation, performance/accuracy, signal processing and data analysis algorithms are discussed. In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed. |
ArticleNumber | 111728 |
Author | Wang, Xingwei Du, Cong Kurup, Pradeep Dutta, Susom Yu, Tzuyang |
Author_xml | – sequence: 1 givenname: Cong surname: Du fullname: Du, Cong organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA 01854, USA – sequence: 2 givenname: Susom surname: Dutta fullname: Dutta, Susom organization: Department of Civil and Environmental Engineering, University of Massachusetts Lowell, MA 01854, USA – sequence: 3 givenname: Pradeep surname: Kurup fullname: Kurup, Pradeep organization: Department of Civil and Environmental Engineering, University of Massachusetts Lowell, MA 01854, USA – sequence: 4 givenname: Tzuyang surname: Yu fullname: Yu, Tzuyang organization: Department of Civil and Environmental Engineering, University of Massachusetts Lowell, MA 01854, USA – sequence: 5 givenname: Xingwei surname: Wang fullname: Wang, Xingwei email: xingwei_wang@uml.edu organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA 01854, USA |
BookMark | eNp9kL1OwzAURi1UJNrCA7BZYk7xX-JETFUFBakSC8yW49jIUWsX26Hq2-MoTAxd7l2-cz_dswAz550G4B6jFUa4euxX0ckVQbhZYYw5qa_AHNecFhRVzQzMUUNYwQjjN2ARY48QopTzOdiuYdA_Vp-gNzBIuz_JM7TOBBlTGFQagoYH72zywbovOMRxGtvqAP0xWQWjdtGHeAuujdxHffe3l-Dz5flj81rs3rdvm_WuUJSUqTAd1bXhJZe5HStTN0gSxDGqOkqJrKuybBFhhDas7ZgxFa952eSoLnFTtx1dgofp7jH470HHJHo_BJcrBWG0YpRSVuYUn1Iq-BiDNkLZJJP1Lo0_CozEaE30IlsTozUxWcsk_kcegz3IcL7IPE2Mzo9nl0FEZbVTurNBqyQ6by_Qv7xUhh0 |
CitedBy_id | crossref_primary_10_3390_s24237818 crossref_primary_10_3390_sym13122251 crossref_primary_10_1364_OE_420758 crossref_primary_10_1016_j_engappai_2023_106003 crossref_primary_10_3390_s23041930 crossref_primary_10_1166_jno_2022_3217 crossref_primary_10_1063_5_0194757 crossref_primary_10_1109_TIM_2022_3188032 crossref_primary_10_1016_j_conbuildmat_2023_132084 crossref_primary_10_1016_j_ymssp_2022_109855 crossref_primary_10_1016_j_engstruct_2022_114143 crossref_primary_10_1016_j_conbuildmat_2021_124324 crossref_primary_10_3390_su12229428 crossref_primary_10_1016_j_advengsoft_2024_103802 crossref_primary_10_3390_s22218320 crossref_primary_10_1016_j_optlastec_2024_110879 crossref_primary_10_1016_j_optlastec_2023_109227 crossref_primary_10_3390_app15073451 crossref_primary_10_1108_SR_02_2021_0035 crossref_primary_10_1088_1361_6501_ac4f00 crossref_primary_10_1016_j_ymssp_2021_107725 crossref_primary_10_1109_JSEN_2023_3295429 crossref_primary_10_1007_s40534_021_00269_4 crossref_primary_10_1061_JSENDH_STENG_12151 crossref_primary_10_1007_s41870_023_01645_5 crossref_primary_10_1016_j_conbuildmat_2022_127271 crossref_primary_10_1002_adpr_202100371 crossref_primary_10_46670_JSST_2022_31_1_24 crossref_primary_10_1016_j_optcom_2021_126981 crossref_primary_10_1016_j_ymssp_2022_109568 crossref_primary_10_3390_s24113602 crossref_primary_10_1109_LPT_2022_3164636 crossref_primary_10_3390_su15065356 crossref_primary_10_1177_1045389X20987002 crossref_primary_10_3390_s23094334 crossref_primary_10_3390_s22197550 crossref_primary_10_3390_s23208346 crossref_primary_10_1109_JSEN_2023_3309648 crossref_primary_10_3390_s22197554 crossref_primary_10_1016_j_measurement_2025_116863 crossref_primary_10_1016_j_jmst_2024_12_058 crossref_primary_10_3390_s20185428 crossref_primary_10_3390_photonics9110869 crossref_primary_10_1002_ente_202000794 crossref_primary_10_1109_TIM_2023_3336173 crossref_primary_10_1007_s10115_023_02009_y crossref_primary_10_1016_j_trpro_2023_11_859 crossref_primary_10_3390_su16010340 crossref_primary_10_3390_s23218830 crossref_primary_10_1177_13621718241272122 crossref_primary_10_1038_d41586_024_01522_6 crossref_primary_10_1007_s13320_021_0620_y crossref_primary_10_1016_j_jobe_2023_106403 crossref_primary_10_3390_s24248205 crossref_primary_10_1364_JOSAA_510051 crossref_primary_10_1088_1361_6501_ac9152 crossref_primary_10_3390_s22093429 crossref_primary_10_1177_14759217241280904 crossref_primary_10_1093_iti_liac009 crossref_primary_10_1016_j_measurement_2024_114279 crossref_primary_10_1364_OE_489964 crossref_primary_10_3390_s24248161 crossref_primary_10_1117_1_OE_63_5_056101 crossref_primary_10_1364_AO_477412 crossref_primary_10_1177_14759217231153678 crossref_primary_10_1109_TIM_2023_3322506 crossref_primary_10_1177_1045389X221128764 crossref_primary_10_1007_s13349_024_00869_8 crossref_primary_10_1109_JSEN_2023_3347307 crossref_primary_10_1109_JSEN_2020_3020907 crossref_primary_10_1021_acssensors_0c01615 crossref_primary_10_1109_JSEN_2023_3255908 crossref_primary_10_3390_vehicles5040069 crossref_primary_10_1364_OE_544953 crossref_primary_10_1109_ACCESS_2020_2990133 crossref_primary_10_1088_1361_6501_ac20b5 crossref_primary_10_3390_ma16247512 crossref_primary_10_3390_coatings11101245 crossref_primary_10_1016_j_conbuildmat_2024_135789 crossref_primary_10_1016_j_aca_2023_341051 crossref_primary_10_1016_j_yofte_2020_102440 crossref_primary_10_1063_5_0157499 crossref_primary_10_1177_00202940211001900 crossref_primary_10_1007_s41870_022_00977_y crossref_primary_10_1109_JSEN_2021_3120995 crossref_primary_10_3389_fsens_2020_00001 crossref_primary_10_1109_JSEN_2023_3313013 crossref_primary_10_3390_s22010296 crossref_primary_10_1080_15732479_2024_2318644 crossref_primary_10_3390_s22124466 crossref_primary_10_3390_s25061933 crossref_primary_10_3390_su152416632 crossref_primary_10_1016_j_autcon_2023_105210 crossref_primary_10_1109_JSEN_2025_3526824 crossref_primary_10_3390_s21113639 crossref_primary_10_1109_JSEN_2024_3467226 crossref_primary_10_1016_j_ijleo_2023_171294 crossref_primary_10_1016_j_measurement_2022_111543 crossref_primary_10_3390_s22072491 crossref_primary_10_1177_16878132241285631 crossref_primary_10_1016_j_esd_2022_03_012 crossref_primary_10_46670_JSST_2022_31_6_441 crossref_primary_10_3390_s22052023 crossref_primary_10_1016_j_sna_2024_116176 crossref_primary_10_1109_LPT_2023_3325428 crossref_primary_10_3788_LOP231453 crossref_primary_10_1016_j_apm_2023_05_008 crossref_primary_10_1109_JSEN_2021_3070721 crossref_primary_10_1177_03611981241239655 crossref_primary_10_3390_s21020353 crossref_primary_10_1142_S0219455420410047 crossref_primary_10_1177_14759217211007127 crossref_primary_10_1039_D5CC00293A crossref_primary_10_1016_j_ymssp_2022_109642 crossref_primary_10_1016_j_trgeo_2025_101487 crossref_primary_10_3390_s20174689 crossref_primary_10_1016_j_reactfunctpolym_2023_105775 crossref_primary_10_1109_JIOT_2024_3390732 crossref_primary_10_3390_s21051818 crossref_primary_10_1177_14759217221149129 crossref_primary_10_3390_s23156734 crossref_primary_10_3390_app14198801 crossref_primary_10_3390_s22010153 crossref_primary_10_1016_j_measurement_2023_113482 crossref_primary_10_1088_1361_6501_ace78f crossref_primary_10_1016_j_conbuildmat_2022_126640 crossref_primary_10_1177_09544097231176464 crossref_primary_10_3389_fphy_2022_927912 crossref_primary_10_1016_j_optlastec_2021_107069 crossref_primary_10_1016_j_aej_2023_09_031 crossref_primary_10_1093_iti_liad018 crossref_primary_10_3390_machines12080498 crossref_primary_10_1364_OE_387413 crossref_primary_10_3390_s23042194 crossref_primary_10_1016_j_autcon_2022_104242 crossref_primary_10_46670_JSST_2023_32_3_199 crossref_primary_10_1134_S002044122106004X crossref_primary_10_1016_j_sna_2021_112859 crossref_primary_10_3390_s23115015 crossref_primary_10_1109_JSEN_2024_3389050 crossref_primary_10_3390_s23052558 crossref_primary_10_1007_s11042_023_15924_7 crossref_primary_10_1016_j_sna_2024_115422 crossref_primary_10_1109_JSEN_2022_3218182 crossref_primary_10_3390_s20154223 |
Cites_doi | 10.1016/j.sna.2005.02.025 10.1109/68.34756 10.3390/s150304996 10.1364/OE.20.011109 10.1007/s11082-016-0616-9 10.1117/12.866433 10.1016/S0165-1684(97)00197-7 10.1617/s11527-013-0201-7 10.1088/0957-0233/27/5/055201 10.3390/s18040980 10.1016/j.sna.2016.11.026 10.1155/2012/204121 10.1007/s13320-010-0019-7 10.2219/rtriqr.54.104 10.1109/50.618320 10.1109/I2MTC.2015.7151353 10.3390/s19030574 10.1109/ISFA.2016.7790143 10.1016/S0013-7952(01)00081-3 10.1049/el:19890612 10.3390/s18051353 10.1002/lpor.201100039 10.1155/2010/936487 10.1088/1757-899X/263/3/032009 10.1016/j.ymssp.2009.06.007 10.1111/1365-2478.12116 10.1109/50.59150 10.1016/j.trgeo.2014.05.002 10.1155/2018/5465391 10.1038/s41598-017-11986-4 10.4028/www.scientific.net/AMR.791-793.1901 10.1109/26.803503 10.1016/j.sna.2004.03.021 10.3141/2448-13 10.1061/(ASCE)1084-0702(2003)8:6(362) 10.1364/AO.52.003770 10.1088/0957-0233/14/5/201 10.1109/JLT.2011.2170813 10.1155/2016/9137531 10.1016/j.measurement.2015.10.002 10.1177/1475921716665563 10.1007/s11340-012-9701-6 10.1109/50.156868 10.1016/j.engstruct.2013.07.005 10.1098/rsta.2006.1928 10.1364/AO.37.001735 10.1260/1369-4332.16.8.1401 10.1109/50.566687 10.1080/00423114.2015.1084427 10.3390/s16010099 10.1109/JLT.2005.849924 10.3390/s140407451 10.1109/THS.2010.5654931 10.1109/EISIC.2012.59 10.1007/s13320-014-0163-6 10.1109/JSEN.2013.2274008 10.1109/LPT.2006.881239 10.1080/23248378.2016.1184598 10.1177/0954409713509980 10.1016/j.enggeo.2004.05.006 10.1109/LPT.2019.2904420 10.1002/met.114 10.1109/JSEN.2013.2256599 10.1016/j.ymssp.2015.01.003 10.1109/LPT.2014.2346760 10.1299/jmtl.3.154 10.1109/TSMCC.2007.893278 10.2174/1874834101508010272 10.1016/j.measurement.2014.09.054 10.1016/j.trgeo.2017.10.002 10.1063/1.92872 10.1139/cgj-2013-0403 10.1016/j.ymssp.2013.06.030 10.1111/j.1747-1567.2012.00844.x 10.1088/0964-1726/22/7/075027 10.1016/j.trd.2008.12.004 10.3390/s17112511 10.3390/s17102368 10.1016/j.measurement.2012.01.034 10.1177/1475921705049764 10.3390/s120708601 10.1109/ICSensT.2013.6727647 10.1016/j.sbspro.2012.06.1152 10.1109/JSEN.2016.2574622 10.1080/713773406 10.2138/rmg.2014.78.14 10.1179/1743281212Y.0000000051 10.1007/s13320-012-0091-2 10.1109/I2MTC.2015.7151415 10.3390/s16050748 10.1364/AO.27.000547 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 1, 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2020 |
DBID | AAYXX CITATION 7TB 7U5 8FD FR3 L7M |
DOI | 10.1016/j.sna.2019.111728 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2019_111728 S0924424719309483 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SEW SSH WUQ 7TB 7U5 8FD EFKBS FR3 L7M |
ID | FETCH-LOGICAL-c325t-fd3e8f757a3771cf890a207106d332a8655b0242394bd4ff678759771e5198bd3 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Mon Jul 14 06:50:52 EDT 2025 Tue Jul 01 01:05:30 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Fri Feb 23 02:47:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural health monitoring Train Railway track Fiber optic sensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c325t-fd3e8f757a3771cf890a207106d332a8655b0242394bd4ff678759771e5198bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2436433345 |
PQPubID | 2045401 |
ParticipantIDs | proquest_journals_2436433345 crossref_citationtrail_10_1016_j_sna_2019_111728 crossref_primary_10_1016_j_sna_2019_111728 elsevier_sciencedirect_doi_10_1016_j_sna_2019_111728 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 2020-03-00 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Section, Balliet (bib0050) 1922 Bommer, Rodrı́guez (bib0575) 2002; 63 Murray, Take, Hoult (bib0110) 2014; 52 Ferdinand (bib0400) 2014 Yucel, Ozturk (bib0625) 2017 Du, Owusu Twumasi, Tang, Guo, Zhou, Yu (bib0175) 2018; 18 Roths, Wilfert, Kratzer, Jülich, Kuttler (bib0345) 2010 Zhang, Wang, Wang, Yu, Xu, Zhang (bib0320) 2013 Hussaini, Indraratna, Vinod (bib0615) 2015 Bocciolone, Bucca, Collina, Comolli (bib0555) 2013; 41 Guo, Zhou, Du, Wang (bib0360) 2019 Krehlik (bib0530) 2014 Islam, Ali, Lai, Lim, Ahmad (bib0465) 2014; 14 Barke, Chiu (bib0120) 2005; 4 Tam, Liu, Guan, Chung, Chan, Cheng (bib0395) 2005 Eickhoff, Ulrich (bib0270) 1981; 39 Horiguchi, Kurashima, Tateda (bib0275) 1989; 1 Zhang, Liu, Jing, Li (bib0610) 2017 Zou, Chao, Wu, Tian, Yu, Wang (bib0300) 2013 Catalano, Bruno, Galliano, Pisco, Persiano, Cutolo (bib0680) 2017; 253 Loupos, Amditis (bib0380) 2017 Li, Wang, Tao (bib0405) 2015; 8 Wu, Zou, Zhou, Wang (bib0365) 2016; 79 Tosi (bib0215) 2017; 17 Marino, Distante, Mazzeo, Stella (bib0135) 2007; 37 Mishra, Tutumluer, Boler, Hyslip, Sussmann (bib0125) 2014 Tam, Lee, Ho, Haber, Graver, Méndez (bib0060) 2007; 2 Wagner, Maicz, Viel, Saliger, Saliger, Horak (bib0560) 2014 Zhang, Lu, Wang, Liang, Zhang (bib0220) 2011; 1 Yoon, Song, Choi, Na, Kim (bib0675) 2016; 2016 Guo, Wu, Luo, Chen, Wang (bib0370) 2016 Thakkar, Steel, Reuben (bib0085) 2010; 24 Yeager, Todd, Gregory, Key (bib0375) 2017; 16 Dou, Lindsey, Wagner, Daley, Freifeld, Robertson (bib0255) 2017; 7 Bandula-Heva, Dhanasekar, Boyd (bib0105) 2013; 53 Bernini, Minardo, Zeni (bib0170) 2005; 123 Kepak, Cubik, Zavodny, Siska, Davidson, Glesk (bib0520) 2016; 48 Ye, Ni, Yin (bib0655) 2013; 16 Huntley, Bobrowsky, Qing, Sladen, Bunce, Edwards (bib0720) 2014 Horiguchi, Kurashima, Tateda, Ishihara, Wakui (bib0245) 1992; 10 Ngamkhanong, Kaewunruen, Costa (bib0150) 2018 Lai, Au, Liu, Ho, Tam (bib0620) 2016; 16 Zhang, Kassam (bib0690) 1999; 47 Chen, Vidakovic, Fabian, Swift, Brun, Sun (bib0565) 2017 Tateda, Horiguchi, Kurashima, Ishihara (bib0280) 1990; 8 Ping, Kaize, Liyang, Lianshan, Jingmang, Rong (bib0580) 2016; 25 Tseng, Chen (bib0305) 1988; 27 Le Pen, Watson, Powrie, Yeo, Weston, Roberts (bib0115) 2014; 1 Liang, Sheng, Lou, Feng, Zhang (bib0470) 2016; 8 Sogabe, Asanuma, Nakamura, Kataoka, Goto, Tokunaga (bib0010) 2013; 54 Zhang, Feng, Zou, Wang, Shen (bib0095) 2015 Garcus, Gogolla, Krebber, Schliep (bib0165) 1997; 15 Shi, Xu, Chen, Zhang, Ding, Cui (bib0390) 2003; 21 Oslakovic, ter Maat, Hartmann, Dewulf (bib0015) 2012; 48 Chu (bib0070) 2007 Hill, Meltz (bib0195) 1997; 15 Arsenault, Achuthan, Marzocca, Grappasonni, Coppotelli (bib0350) 2013; 22 Kang, Kim, Jang (bib0605) 2014; 38 Scott, Banerji, Chikermane, Srinivasan, Basheer, Surre (bib0650) 2013; 13 Bird, Bommer (bib0570) 2004; 75 Wei, Zhang, Zhang, Xi, Li, Liu (bib0660) 2013; 791-793 Kostryzhev, Davis, Roberts (bib0090) 2013; 40 Barrias, Casas, Villalba (bib0160) 2016; 16 da CUNHA, Alcantara, Santa Brígida, Borges, Costa (bib0210) 2013; 3 Hyvärinen, Oja (bib0695) 1998; 64 Dutta, Murthy, Kim, Samui (bib0040) 2017; 53 Barrias, Casas, Villalba (bib0340) 2018; 18 Peng, Duan, Rao, Li (bib0505) 2014; 26 Jasenek (bib0425) 2001; 52 Hecht (bib0155) 2010 Stephen, Ralph (bib0200) 2003; 14 Klug, Lackner, Lienhart (bib0595) 2019 Filograno, Rodriguez-Barrios, Corredera, Martin-Lopez, Rodriguez-Plaza, Andres-Alguacil (bib0480) 2010 Wang, Lu, Zheng, Ye, Pan, Cai (bib0640) 2017 Mori, Tsunashima, Kojima, Matsumoto, Mizuma (bib0065) 2010; 3 Kreger, Rahim, Garg, Klute, Metrey, Beaty (bib0265) 2016 Jacques, Li‐Yang, Christophe (bib0205) 2013; 7 Li, Pang, Lu, Liu (bib0665) 2014; 4 Zou, Long, Chen (bib0450) 2015 Zhang, Yu, Song (bib0315) 2004; 116 Dutta, Barik (bib0145) 2017 Krohn (bib0225) 2000 Laarossi, Quintela-Incera, López-Higuera (bib0460) 2019; 19 Pinto, Ribeiro, Gabriel, Calçada (bib0645) 2015; 229 Nan, Xiaotian, Ye, John, Michael, Christopher (bib0290) 2012; 23 Wheeler, Pannese, Hoult, Take, Le (bib0600) 2018; 14 Duckworth, Ku (bib0700) 2013 Udd (bib0335) 1993 Allotta, D’Adamio, Meli, Pugi (bib0490) 2015; 53 Wenzel (bib0030) 2008 Farrar, Worden (bib0045) 2007; 365 Feng, Zhang, Zou, Wang, Yi (bib0100) 2015 Filograno, Corredera, Lerma, Esteban, González-Herráez (bib0550) 2010 Timofeev, Egorov, Denisov (bib0510) 2015; 9 Yuksel, Wuilpart, Moeyaert, Mégret (bib0430) 2009 Zhang, Koh, Kuang (bib0540) 2018 Miah, Potter (bib0410) 2017; 17 Kouroussis, Kinet, Moeyaert, Dupuy, Caucheteur (bib0500) 2016; 4 Owen, Duckworth, Worsley (bib0705) 2012 Minardo, Porcaro, Giannetta, Bernini, Zeni (bib0585) 2013; 52 Park, Bolognini, Lee, Kim, Cho, Di Pasquale (bib0455) 2006; 18 Mi, Gao, Zhu, Wang, Zhao (bib0485) 2014 Bao, Chen, Meng, Tang, Chen (bib0590) 2015 Speziale, Marquardt, Duffy (bib0440) 2014; 78 Li, Xia, Xie, Liu (bib0325) 2012; 20 Ramakrishnan, Rajan, Semenova, Farrell (bib0180) 2016; 16 Uchida, Levenberg, Klar (bib0285) 2015; 60 Mateeva, Lopez, Potters, Mestayer, Cox, Kiyashchenko (bib0260) 2014; 62 Mitchell (bib0310) 1991 Koetse, Rietveld (bib0020) 2009; 14 Singh, Swarup, Agarwal, Singh (bib0130) 2017 Minardo, Picarelli, Zeni, Catalano, Coscetta, Zhang (bib0715) 2017 Juarez, Maier, Choi, Taylor (bib0710) 2005; 23 Zou, Chao, Tian, Wu, Zhang, Yu (bib0295) 2012; 45 Casas, Cruz (bib0385) 2003; 8 Glisic (bib0355) 2013; 292 Thompson (bib0525) 2008 Filograno, Corredera, Rodríguez-Plaza, Andrés-Alguacil, González-Herráez (bib0535) 2013; 13 Dobney, Baker, Quinn, Chapman (bib0005) 2009; 16 Dutta, Samui, Kim (bib0035) 2018; 21 Peltier, Barkan, Downing, Socie (bib0055) 2007 Hill (bib0250) 2015 Du, Twumasi, Tang, Wu, Yu, Wang (bib0330) 2018 Rodriguez, Casas, Villalba (bib0415) 2015; 2 Dibazar, Yousefi, Park, Lu, George, Berger (bib0685) 2010 Fomitchov, Krishnaswamy (bib0190) 2003 Froggatt, Moore (bib0420) 1998; 37 Chapeleau, Sedran, Cottineau, Cailliau, Taillade, Gueguen (bib0630) 2013; 56 Culverhouse, Farahi, Pannell, Jackson (bib0240) 1989; 25 Yu, Shan, Yuan, Li (bib0670) 2018; 2018 Galindez-Jamioy, Lopez-Higuera (bib0445) 2012; 2012 Jenkins, Buggy, Morison (bib0140) 2019 Timofeev (bib0515) 2015; 9 Leung, Wan, Inaudi, Bao, Habel, Zhou (bib0185) 2015; 48 Roveri, Carcaterra, Sestieri (bib0545) 2015; 60-61 Li (bib0230) 2017 Bao, Chen (bib0235) 2012; 12 Dong, Chen, Bao (bib0435) 2012; 30 Leviäkangas, Tuominen, Molarius, Schabel, Toivonen, Keränen (bib0025) 2011 García, Corres, Goicoechea (bib0475) 2010; 2010 Kinet, Kouroussis, Dupuy, Moeyaert, Verlinden, Caucheteur (bib0495) 2016 Buggy, James, Staines, Carroll, Kitson, Farrington (bib0635) 2016; 27 Cañete, Chen, Díaz, Llopis, Rubio (bib0075) 2015; 15 Yilmazer (bib0080) 2013 Kreger (10.1016/j.sna.2019.111728_bib0265) 2016 Zhang (10.1016/j.sna.2019.111728_bib0095) 2015 Culverhouse (10.1016/j.sna.2019.111728_bib0240) 1989; 25 Sogabe (10.1016/j.sna.2019.111728_bib0010) 2013; 54 Uchida (10.1016/j.sna.2019.111728_bib0285) 2015; 60 Dong (10.1016/j.sna.2019.111728_bib0435) 2012; 30 Kang (10.1016/j.sna.2019.111728_bib0605) 2014; 38 Bandula-Heva (10.1016/j.sna.2019.111728_bib0105) 2013; 53 Wenzel (10.1016/j.sna.2019.111728_bib0030) 2008 Zhang (10.1016/j.sna.2019.111728_bib0540) 2018 Wagner (10.1016/j.sna.2019.111728_bib0560) 2014 Koetse (10.1016/j.sna.2019.111728_bib0020) 2009; 14 Tateda (10.1016/j.sna.2019.111728_bib0280) 1990; 8 Fomitchov (10.1016/j.sna.2019.111728_bib0190) 2003 Zou (10.1016/j.sna.2019.111728_bib0300) 2013 Timofeev (10.1016/j.sna.2019.111728_bib0510) 2015; 9 Mitchell (10.1016/j.sna.2019.111728_bib0310) 1991 Eickhoff (10.1016/j.sna.2019.111728_bib0270) 1981; 39 Chu (10.1016/j.sna.2019.111728_bib0070) 2007 Loupos (10.1016/j.sna.2019.111728_bib0380) 2017 Li (10.1016/j.sna.2019.111728_bib0405) 2015; 8 García (10.1016/j.sna.2019.111728_bib0475) 2010; 2010 Allotta (10.1016/j.sna.2019.111728_bib0490) 2015; 53 Bernini (10.1016/j.sna.2019.111728_bib0170) 2005; 123 Hill (10.1016/j.sna.2019.111728_bib0250) 2015 Udd (10.1016/j.sna.2019.111728_bib0335) 1993 Shi (10.1016/j.sna.2019.111728_bib0390) 2003; 21 Singh (10.1016/j.sna.2019.111728_bib0130) 2017 Ping (10.1016/j.sna.2019.111728_bib0580) 2016; 25 Miah (10.1016/j.sna.2019.111728_bib0410) 2017; 17 Yoon (10.1016/j.sna.2019.111728_bib0675) 2016; 2016 Section (10.1016/j.sna.2019.111728_bib0050) 1922 Guo (10.1016/j.sna.2019.111728_bib0370) 2016 Peltier (10.1016/j.sna.2019.111728_bib0055) 2007 Roveri (10.1016/j.sna.2019.111728_bib0545) 2015; 60-61 Filograno (10.1016/j.sna.2019.111728_bib0535) 2013; 13 Jasenek (10.1016/j.sna.2019.111728_bib0425) 2001; 52 Dutta (10.1016/j.sna.2019.111728_bib0145) 2017 Dutta (10.1016/j.sna.2019.111728_bib0040) 2017; 53 Wang (10.1016/j.sna.2019.111728_bib0640) 2017 Dibazar (10.1016/j.sna.2019.111728_bib0685) 2010 Chen (10.1016/j.sna.2019.111728_bib0565) 2017 Duckworth (10.1016/j.sna.2019.111728_bib0700) 2013 Li (10.1016/j.sna.2019.111728_bib0665) 2014; 4 Klug (10.1016/j.sna.2019.111728_bib0595) 2019 Huntley (10.1016/j.sna.2019.111728_bib0720) 2014 Owen (10.1016/j.sna.2019.111728_bib0705) 2012 Oslakovic (10.1016/j.sna.2019.111728_bib0015) 2012; 48 Dutta (10.1016/j.sna.2019.111728_bib0035) 2018; 21 Marino (10.1016/j.sna.2019.111728_bib0135) 2007; 37 Mori (10.1016/j.sna.2019.111728_bib0065) 2010; 3 Garcus (10.1016/j.sna.2019.111728_bib0165) 1997; 15 Zhang (10.1016/j.sna.2019.111728_bib0610) 2017 Zou (10.1016/j.sna.2019.111728_bib0450) 2015 Krohn (10.1016/j.sna.2019.111728_bib0225) 2000 Glisic (10.1016/j.sna.2019.111728_bib0355) 2013; 292 Thakkar (10.1016/j.sna.2019.111728_bib0085) 2010; 24 Tosi (10.1016/j.sna.2019.111728_bib0215) 2017; 17 Feng (10.1016/j.sna.2019.111728_bib0100) 2015 Ngamkhanong (10.1016/j.sna.2019.111728_bib0150) 2018 Galindez-Jamioy (10.1016/j.sna.2019.111728_bib0445) 2012; 2012 Hecht (10.1016/j.sna.2019.111728_bib0155) 2010 Minardo (10.1016/j.sna.2019.111728_bib0715) 2017 Liang (10.1016/j.sna.2019.111728_bib0470) 2016; 8 Li (10.1016/j.sna.2019.111728_bib0230) 2017 Horiguchi (10.1016/j.sna.2019.111728_bib0245) 1992; 10 Dobney (10.1016/j.sna.2019.111728_bib0005) 2009; 16 Barrias (10.1016/j.sna.2019.111728_bib0160) 2016; 16 Kostryzhev (10.1016/j.sna.2019.111728_bib0090) 2013; 40 Guo (10.1016/j.sna.2019.111728_bib0360) 2019 Bird (10.1016/j.sna.2019.111728_bib0570) 2004; 75 Filograno (10.1016/j.sna.2019.111728_bib0550) 2010 Barrias (10.1016/j.sna.2019.111728_bib0340) 2018; 18 Bocciolone (10.1016/j.sna.2019.111728_bib0555) 2013; 41 Chapeleau (10.1016/j.sna.2019.111728_bib0630) 2013; 56 Wheeler (10.1016/j.sna.2019.111728_bib0600) 2018; 14 Wu (10.1016/j.sna.2019.111728_bib0365) 2016; 79 da CUNHA (10.1016/j.sna.2019.111728_bib0210) 2013; 3 Pinto (10.1016/j.sna.2019.111728_bib0645) 2015; 229 Krehlik (10.1016/j.sna.2019.111728_bib0530) 2014 Tam (10.1016/j.sna.2019.111728_bib0060) 2007; 2 Buggy (10.1016/j.sna.2019.111728_bib0635) 2016; 27 Peng (10.1016/j.sna.2019.111728_bib0505) 2014; 26 Ferdinand (10.1016/j.sna.2019.111728_bib0400) 2014 Mi (10.1016/j.sna.2019.111728_bib0485) 2014 Jacques (10.1016/j.sna.2019.111728_bib0205) 2013; 7 Kouroussis (10.1016/j.sna.2019.111728_bib0500) 2016; 4 Filograno (10.1016/j.sna.2019.111728_bib0480) 2010 Juarez (10.1016/j.sna.2019.111728_bib0710) 2005; 23 Scott (10.1016/j.sna.2019.111728_bib0650) 2013; 13 Zhang (10.1016/j.sna.2019.111728_bib0320) 2013 Farrar (10.1016/j.sna.2019.111728_bib0045) 2007; 365 Dou (10.1016/j.sna.2019.111728_bib0255) 2017; 7 Bao (10.1016/j.sna.2019.111728_bib0235) 2012; 12 Bao (10.1016/j.sna.2019.111728_bib0590) 2015 Cañete (10.1016/j.sna.2019.111728_bib0075) 2015; 15 Roths (10.1016/j.sna.2019.111728_bib0345) 2010 Barke (10.1016/j.sna.2019.111728_bib0120) 2005; 4 Yeager (10.1016/j.sna.2019.111728_bib0375) 2017; 16 Arsenault (10.1016/j.sna.2019.111728_bib0350) 2013; 22 Jenkins (10.1016/j.sna.2019.111728_bib0140) 2019 Bommer (10.1016/j.sna.2019.111728_bib0575) 2002; 63 Kepak (10.1016/j.sna.2019.111728_bib0520) 2016; 48 Yu (10.1016/j.sna.2019.111728_bib0670) 2018; 2018 Hussaini (10.1016/j.sna.2019.111728_bib0615) 2015 Li (10.1016/j.sna.2019.111728_bib0325) 2012; 20 Hyvärinen (10.1016/j.sna.2019.111728_bib0695) 1998; 64 Casas (10.1016/j.sna.2019.111728_bib0385) 2003; 8 Islam (10.1016/j.sna.2019.111728_bib0465) 2014; 14 Zhang (10.1016/j.sna.2019.111728_bib0690) 1999; 47 Catalano (10.1016/j.sna.2019.111728_bib0680) 2017; 253 Yilmazer (10.1016/j.sna.2019.111728_bib0080) 2013 Yucel (10.1016/j.sna.2019.111728_bib0625) 2017 Zou (10.1016/j.sna.2019.111728_bib0295) 2012; 45 Leviäkangas (10.1016/j.sna.2019.111728_bib0025) 2011 Froggatt (10.1016/j.sna.2019.111728_bib0420) 1998; 37 Zhang (10.1016/j.sna.2019.111728_bib0220) 2011; 1 Wei (10.1016/j.sna.2019.111728_bib0660) 2013; 791-793 Park (10.1016/j.sna.2019.111728_bib0455) 2006; 18 Nan (10.1016/j.sna.2019.111728_bib0290) 2012; 23 Yuksel (10.1016/j.sna.2019.111728_bib0430) 2009 Hill (10.1016/j.sna.2019.111728_bib0195) 1997; 15 Zhang (10.1016/j.sna.2019.111728_bib0315) 2004; 116 Kinet (10.1016/j.sna.2019.111728_bib0495) 2016 Timofeev (10.1016/j.sna.2019.111728_bib0515) 2015; 9 Mishra (10.1016/j.sna.2019.111728_bib0125) 2014 Ramakrishnan (10.1016/j.sna.2019.111728_bib0180) 2016; 16 Laarossi (10.1016/j.sna.2019.111728_bib0460) 2019; 19 Stephen (10.1016/j.sna.2019.111728_bib0200) 2003; 14 Speziale (10.1016/j.sna.2019.111728_bib0440) 2014; 78 Rodriguez (10.1016/j.sna.2019.111728_bib0415) 2015; 2 Tseng (10.1016/j.sna.2019.111728_bib0305) 1988; 27 Lai (10.1016/j.sna.2019.111728_bib0620) 2016; 16 Minardo (10.1016/j.sna.2019.111728_bib0585) 2013; 52 Thompson (10.1016/j.sna.2019.111728_bib0525) 2008 Ye (10.1016/j.sna.2019.111728_bib0655) 2013; 16 Mateeva (10.1016/j.sna.2019.111728_bib0260) 2014; 62 Horiguchi (10.1016/j.sna.2019.111728_bib0275) 1989; 1 Tam (10.1016/j.sna.2019.111728_bib0395) 2005 Leung (10.1016/j.sna.2019.111728_bib0185) 2015; 48 Murray (10.1016/j.sna.2019.111728_bib0110) 2014; 52 Le Pen (10.1016/j.sna.2019.111728_bib0115) 2014; 1 Du (10.1016/j.sna.2019.111728_bib0175) 2018; 18 Du (10.1016/j.sna.2019.111728_bib0330) 2018 |
References_xml | – start-page: 1046 year: 2015 end-page: 1051 ident: bib0095 article-title: An investigation on rail health monitoring using acoustic emission technique by tensile test publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE – year: 2015 ident: bib0450 article-title: Brillouin scattering in optical fibers and its application to distributed sensors publication-title: Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications – year: 2016 ident: bib0265 article-title: Optical frequency domain reflectometry: principles and applications in fiber optic sensing, Fiber optic Sensors and Applications XIII publication-title: Int. Soc. Opt. Photon. – start-page: 226 year: 2013 end-page: 229 ident: bib0320 article-title: Mach-Zehnder interferometer as a temperature sensor based on the nested fiber ring resonator publication-title: 2013 Seventh International Conference on Sensing Technology (ICST), IEEE – volume: 2012 year: 2012 ident: bib0445 article-title: Brillouin distributed fiber sensors: an overview and applications publication-title: J. Sens. – volume: 23 year: 2012 ident: bib0290 article-title: An ultra-fast fiber optic pressure sensor for blast event measurements publication-title: Meas. Sci. Technol. – volume: 116 start-page: 33 year: 2004 end-page: 38 ident: bib0315 article-title: An investigation of interference/intensity demodulated fiber-optic Fabry–Perot cavity sensor publication-title: Sens. Actuators A Phys. – start-page: 415 year: 2014 end-page: 421 ident: bib0720 article-title: Fiber Optic Strain Monitoring and Evaluation of a Slow-moving Landslide Near Ashcroft, British Columbia, canada, Landslide Science for a Safer Geoenvironment – start-page: 139 year: 1991 end-page: 156 ident: bib0310 article-title: Intensity-based and Fabry-perot Interferometer Sensors, Fiber optic Sensors: an Introduction for Engineers and Scientists – volume: 60 start-page: 104 year: 2015 end-page: 113 ident: bib0285 article-title: On-specimen strain measurement with fiber optic distributed sensing publication-title: Measurement – volume: 229 start-page: 280 year: 2015 end-page: 290 ident: bib0645 article-title: Dynamic monitoring of railway track displacement using an optical system publication-title: Arch. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 1989-1996 – volume: 24 start-page: 256 year: 2010 end-page: 266 ident: bib0085 article-title: Rail–wheel interaction monitoring using Acoustic Emission: a laboratory study of normal rolling signals with natural rail defects publication-title: Mech. Syst. Signal Process. – volume: 23 start-page: 2081 year: 2005 end-page: 2087 ident: bib0710 article-title: Distributed fiber-optic intrusion sensor system publication-title: J. Light. Technol. – volume: 4 start-page: 81 year: 2005 end-page: 93 ident: bib0120 article-title: Structural health monitoring in the railway industry: a review publication-title: Struct. Health Monit. – volume: 3 start-page: 154 year: 2010 end-page: 165 ident: bib0065 article-title: Condition monitoring of railway track using in-service vehicle publication-title: J. Mech. Syst. Transp. Logist. – year: 2016 ident: bib0495 article-title: Cost-effective FBG Interrogation Combined With Cepstral-based Signal Processing for Railway Traffic Monitoring, SPIE Photonics Europe – year: 2014 ident: bib0400 article-title: The evolution of optical fiber sensors technologies during the 35 last years and their applications in structure health monitoring publication-title: EWSHM-7th European Workshop on Structural Health Monitoring – year: 1922 ident: bib0050 article-title: The Invention of the Track Circuit: the History of Dr. William Robinson’s Invention of the Track Circuit, the Fundamental Unit Which Made Possible Our Present Automatic Block Signaling and Interlocking Systems: Signal Section, American Railway Association – volume: 52 start-page: 141 year: 2014 end-page: 155 ident: bib0110 article-title: Measurement of vertical and longitudinal rail displacements using digital image correlation publication-title: Can. Geotech. J. – volume: 25 start-page: 913 year: 1989 end-page: 915 ident: bib0240 article-title: Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors publication-title: Electron. Lett. – volume: 48 start-page: 871 year: 2015 end-page: 906 ident: bib0185 article-title: Review: optical fiber sensors for civil engineering applications publication-title: Mater. Struct. – volume: 15 start-page: 4996 year: 2015 end-page: 5019 ident: bib0075 article-title: Sensor4PRI: A sensor platform for the protection of railway infrastructures publication-title: Sensors – volume: 14 start-page: 7451 year: 2014 end-page: 7488 ident: bib0465 article-title: Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review publication-title: Sensors – volume: 48 start-page: 1775 year: 2012 end-page: 1784 ident: bib0015 article-title: Climate change and infrastructure performance: should we worry about? publication-title: Procedia-Soc. Behav. Sci. – volume: 16 start-page: 99 year: 2016 ident: bib0180 article-title: Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials publication-title: Sensors – start-page: 76530F year: 2010 ident: bib0345 article-title: Strain calibration of optical FBG-based strain sensors, fourth european workshop on optical fibre sensors publication-title: Int. Soc. Opt. Photon. – volume: 53 start-page: 1850 year: 2015 end-page: 1875 ident: bib0490 article-title: Development of a new time domain-based algorithm for train detection and axle counting publication-title: Veh. Syst. Dyn. – volume: 60-61 start-page: 14 year: 2015 end-page: 28 ident: bib0545 article-title: Real-time monitoring of railway infrastructures using fibre Bragg grating sensors publication-title: Mech. Syst. Signal Process. – year: 1993 ident: bib0335 article-title: Fiber Optic Smart Structures, Fibers’ 92 – start-page: 1 year: 2017 end-page: 4 ident: bib0640 article-title: Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR publication-title: 2017 25th Optical Fiber Sensors Conference (OFS) – year: 2015 ident: bib0615 article-title: Application of Optical-Fiber Bragg Grating Sensors in Monitoring the Rail Track Deformations – year: 2013 ident: bib0080 article-title: Structural Health Condition Monitoring of Rails Using Acoustic Emission Techniques – volume: 37 start-page: 418 year: 2007 end-page: 428 ident: bib0135 article-title: A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) – volume: 62 start-page: 679 year: 2014 end-page: 692 ident: bib0260 article-title: Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling publication-title: Geophys. Prospect. – volume: 20 start-page: 11109 year: 2012 end-page: 11120 ident: bib0325 article-title: All-fiber Mach-Zehnder interferometers for sensing applications publication-title: Opt. Express – start-page: 76533M year: 2010 ident: bib0480 article-title: Real-time monitoring of railway traffic using fiber bragg gratings, fourth European Workshop on optical fibre sensors publication-title: Int. Soc. Opt. Photon. – start-page: 1 year: 2017 end-page: 4 ident: bib0565 article-title: A temperature compensated fibre Bragg grating (FBG)-based sensor system for condition monitoring of electrified railway pantograph publication-title: 2017 25th Optical Fiber Sensors Conference (OFS) – volume: 253 start-page: 91 year: 2017 end-page: 100 ident: bib0680 article-title: An optical fiber intrusion detection system for railway security publication-title: Sens. Actuators A Phys. – volume: 18 start-page: 1353 year: 2018 ident: bib0175 article-title: All-optical photoacoustic sensors for steel rebar corrosion monitoring publication-title: Sensors – year: 2014 ident: bib0560 article-title: A fibre optic sensor instrumented pantograph as part of a continuous structural health monitoring system for railway overhead lines publication-title: EWSHM - 7th European Workshop on Structural Health Monitoring – volume: 79 start-page: 164 year: 2016 end-page: 171 ident: bib0365 article-title: Fiber optic ultrasound transmitters and their applications publication-title: Measurement – volume: 8 start-page: 362 year: 2003 end-page: 373 ident: bib0385 article-title: Fiber optic sensors for bridge monitoring publication-title: J. Bridge Eng. – volume: 54 start-page: 104 year: 2013 end-page: 111 ident: bib0010 article-title: Deformation behavior of ballasted track during earthquakes publication-title: Quart. Report RTRI – volume: 2018 start-page: 14 year: 2018 ident: bib0670 article-title: Performance deterioration of heavy-haul railway bridges under fatigue loading monitored by a multisensor system publication-title: J. Sens. – volume: 7 start-page: 83 year: 2013 end-page: 108 ident: bib0205 article-title: Tilted fiber Bragg grating sensors publication-title: Laser Photon. Rev. – volume: 17 start-page: 2511 year: 2017 ident: bib0410 article-title: A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications publication-title: Sensors – start-page: 362 year: 2012 end-page: 364 ident: bib0705 article-title: OptaSense: fibre optic distributed acoustic sensing for border monitoring publication-title: 2012 European Intelligence and Security Informatics Conference, IEEE – volume: 7 start-page: 11620 year: 2017 ident: bib0255 article-title: Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study publication-title: Sci. Rep. – volume: 21 start-page: 333 year: 2003 end-page: 343 ident: bib0390 article-title: A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan Strait Tunnel Project publication-title: Mar. Georesources Geotechnol. – volume: 16 start-page: 262 year: 2017 end-page: 275 ident: bib0375 article-title: Assessment of embedded fiber Bragg gratings for structural health monitoring of composites publication-title: Struct. Health Monit. – volume: 30 start-page: 1161 year: 2012 end-page: 1167 ident: bib0435 article-title: Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs publication-title: J. Light. Technol. – volume: 52 start-page: 3770 year: 2013 end-page: 3776 ident: bib0585 article-title: Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors publication-title: Appl. Opt. – year: 2015 ident: bib0250 article-title: Distributed Acoustic Sensing (DAS): Theory and Applications, Frontiers in Optics 2015 – volume: 791-793 start-page: 1901 year: 2013 end-page: 1904 ident: bib0660 article-title: Research on evaluation method of the bridge strengthening effect based on Fiber optic sensor publication-title: Adv. Mater. Res. – volume: 13 start-page: 4808 year: 2013 end-page: 4816 ident: bib0535 article-title: Wheel flat detection in high-speed railway systems using Fiber bragg gratings publication-title: IEEE Sens. J. – year: 2019 ident: bib0140 article-title: An Imaging System for Visual Inspection and Structural Condition Monitoring of Railway Tunnels – volume: 27 start-page: 547 year: 1988 end-page: 551 ident: bib0305 article-title: Optical fiber fabry-perot sensors publication-title: Appl. Opt. – volume: 16 start-page: 245 year: 2009 end-page: 251 ident: bib0005 article-title: Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south‐east United Kingdom publication-title: Meteorol. Appl. – volume: 19 start-page: 574 year: 2019 ident: bib0460 article-title: Comparative experimental study of a high-temperature raman-based distributed optical fiber sensor with different special fibers publication-title: Sensors – volume: 27 year: 2016 ident: bib0635 article-title: Railway track component condition monitoring using optical fibre Bragg grating sensors publication-title: Meas. Sci. Technol. – start-page: 87110G year: 2013 ident: bib0700 article-title: OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism, Sensors, and command, control, communications, and intelligence (c3i) Technologies for homeland security and homeland defense XII publication-title: Int. Soc. Opt. Photon. – volume: 10 start-page: 1196 year: 1992 end-page: 1201 ident: bib0245 article-title: Brillouin characterization of fiber strain in bent slot-type optical-fiber cables publication-title: J. Light. Technol. – volume: 16 start-page: 6346 year: 2016 end-page: 6350 ident: bib0620 article-title: Development of level sensors based on Fiber bragg grating for railway track differential settlement measurement publication-title: IEEE Sens. J. – volume: 13 start-page: 2555 year: 2013 end-page: 2562 ident: bib0650 article-title: Commissioning and evaluation of a fiber-optic sensor system for bridge monitoring publication-title: IEEE Sens. J. – year: 2019 ident: bib0595 article-title: Monitoring of Railway Deformations Using Distributed Fiber optic Sensors – volume: 37 start-page: 1735 year: 1998 end-page: 1740 ident: bib0420 article-title: High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter publication-title: Appl. Opt. – volume: 14 start-page: 70 year: 2018 end-page: 80 ident: bib0600 article-title: Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: lab and field evaluation publication-title: Transp. Geotech. – year: 2017 ident: bib0230 article-title: Rayleigh Scattering Based Distributed Optical Fiber Sensing, Applied Optics and Photonics China (AOPC2017) – volume: 41 start-page: 226 year: 2013 end-page: 238 ident: bib0555 article-title: Pantograph–catenary monitoring by means of fibre Bragg grating sensors: results from tests in an underground line publication-title: Mech. Syst. Signal Process. – volume: 25 year: 2016 ident: bib0580 article-title: Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors publication-title: Smart Mater. Struct. – year: 2011 ident: bib0025 article-title: Extreme Weather Impacts on Transport Systems – start-page: 3 year: 2018 ident: bib0150 article-title: State-of-the-Art Review of Railway Track Resilience Monitoring, Infrastructures – volume: 14 start-page: R49 year: 2003 ident: bib0200 article-title: Optical fibre long-period grating sensors: characteristics and application publication-title: Meas. Sci. Technol. – volume: 39 start-page: 693 year: 1981 end-page: 695 ident: bib0270 article-title: Optical frequency domain reflectometry in single‐mode fiber publication-title: Appl. Phys. Lett. – start-page: 185 year: 2017 end-page: 206 ident: bib0380 article-title: Structural health monitoring fiber optic sensors publication-title: Fiber Optic Sensors: Current Status and Future Possibilities – volume: 8 start-page: 1 year: 2016 end-page: 12 ident: bib0470 article-title: Combination of phase-sensitive OTDR and michelson interferometer for nuisance alarm rate reducing and event identification publication-title: IEEE Photon. J. – start-page: 699 year: 2015 end-page: 704 ident: bib0100 article-title: Rail health monitoring using acoustic emission technique based on NMF and RVM publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE – start-page: 1 year: 2009 end-page: 5 ident: bib0430 article-title: Optical frequency domain reflectometry: a review publication-title: 2009 11th International Conference on Transparent Optical Networks, IEEE – volume: 2 start-page: 357 year: 2015 end-page: 382 ident: bib0415 article-title: SHM by DOFS in civil engineering: a review publication-title: Struct. Monit. Maint. – year: 2017 ident: bib0145 article-title: Studies on geotechnical properties of subsoil in south east coastal region of India publication-title: IOP Conference Series: Materials Science and Engineering – volume: 53 start-page: 157 year: 2017 end-page: 174 ident: bib0040 article-title: Prediction of compressive strength of self-compacting concrete using intelligent computational modeling publication-title: CMC-Comput. Mater. Continua – volume: 38 start-page: 39 year: 2014 end-page: 47 ident: bib0605 article-title: Design and development of structural health monitoring system for smart railroad-gauge-facility using FBG sensors publication-title: Exp. Tech. – volume: 64 start-page: 301 year: 1998 end-page: 313 ident: bib0695 article-title: Independent component analysis by general nonlinear Hebbian-like learning rules publication-title: Signal Process. – volume: 2 start-page: 1824 year: 2007 end-page: 1831 ident: bib0060 article-title: Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications publication-title: Struct. Health Monit. – volume: 12 start-page: 8601 year: 2012 ident: bib0235 article-title: Recent progress in distributed fiber optic sensors publication-title: Sensors – year: 2015 ident: bib0590 article-title: Kilometer-Long Optical Fiber Sensor for Real-Time Railroad Infrastructure Monitoring to Ensure Safe Train Operation – year: 2013 ident: bib0300 article-title: A Novel Fabry-perot Fiber Optic Temperature Sensor for Early Age Hydration Heat Study in Portland Cement Concrete – volume: 52 start-page: 187 year: 2001 end-page: 192 ident: bib0425 article-title: Capabilities and limitations of coherent optical frequency-domain reflectometry publication-title: J. Electr. Eng. Bratislava – volume: 18 start-page: 1879 year: 2006 end-page: 1881 ident: bib0455 article-title: Raman-based distributed temperature sensor with simplex coding and link optimization publication-title: IEEE Photo. Technol. Lett. – year: 2000 ident: bib0225 article-title: Fiber Optic Sensors: Fundamentals and Applications – volume: 22 year: 2013 ident: bib0350 article-title: Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring publication-title: Smart Mater. Struct. – volume: 292 start-page: 1 year: 2013 end-page: 18 ident: bib0355 article-title: Distributed fiber optic sensing technologies and applications–an overview publication-title: ACI Spec. Publ. – volume: 4 start-page: 135 year: 2016 end-page: 150 ident: bib0500 article-title: Railway structure monitoring solutions using fibre Bragg grating sensors publication-title: Int. J. Rail Transp. – volume: 18 start-page: 980 year: 2018 ident: bib0340 article-title: Embedded distributed optical fiber sensors in reinforced concrete structures—a case study publication-title: Sensors – year: 2007 ident: bib0055 article-title: Using Strain Gauges to Detect Epoxy Debonding in Insulated Rail Joints – volume: 1 start-page: 201 year: 2014 end-page: 213 ident: bib0115 article-title: The behaviour of railway level crossings: insights through field monitoring publication-title: Transp. Geotech. – year: 2007 ident: bib0070 article-title: Specialized Sensors for Railroad Applications – start-page: 105 year: 2014 end-page: 114 ident: bib0125 article-title: Railroad track transitions with multidepth deflectometers and strain gauges publication-title: Transp. Res. Rec. J. Transp. Res. Board – volume: 16 start-page: 748 year: 2016 ident: bib0160 article-title: A review of distributed optical fiber sensors for civil engineering applications publication-title: Sensors – volume: 1 start-page: 54 year: 2011 end-page: 61 ident: bib0220 article-title: Development of fully-distributed fiber sensors based on Brillouin scattering publication-title: Photonic Sens. – volume: 63 start-page: 189 year: 2002 end-page: 220 ident: bib0575 article-title: Earthquake-induced landslides in Central America publication-title: Eng. Geol. – volume: 48 start-page: 354 year: 2016 ident: bib0520 article-title: Fibre optic track vibration monitoring system publication-title: Opt. Quantum Electron. – volume: 45 start-page: 1077 year: 2012 end-page: 1082 ident: bib0295 article-title: An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors publication-title: Measurement – volume: 26 start-page: 2055 year: 2014 end-page: 2057 ident: bib0505 article-title: Real-time position and speed monitoring of trains using phase-sensitive OTDR publication-title: IEEE Photon.Technol. Lett. – volume: 2010 year: 2010 ident: bib0475 article-title: Vibration detection using optical fiber sensors publication-title: J. Sens. – year: 2005 ident: bib0395 article-title: Fiber Bragg Grating Sensors for Structural and Railway Applications, Photonics Asia – volume: 21 start-page: 463 year: 2018 end-page: 470 ident: bib0035 article-title: Comparison of machine learning techniques to predict compressive strength of concrete publication-title: Comput. Concr. – volume: 17 start-page: 2368 year: 2017 ident: bib0215 article-title: Review and Analysis of peak tracking techniques for fiber Bragg grating sensors publication-title: Sensors – start-page: 1 year: 2017 end-page: 15 ident: bib0625 article-title: Real-time monitoring of railroad track tension using a fiber Bragg grating-based strain sensor publication-title: Instrum. Sci. Technol. – start-page: 351 year: 2010 end-page: 356 ident: bib0685 article-title: Intelligent acoustic and vibration recognition/alert systems for security breaching detection, close proximity danger identification, and perimeter protection publication-title: 2010 IEEE International Conference on Technologies for Homeland Security (HST), IEEE – year: 2008 ident: bib0525 article-title: Railway Noise and Vibration: Mechanisms, Modelling and Means of Control – year: 2018 ident: bib0330 article-title: Real Time Corrosion Detection of Rebar Using Embeddable Fiber Optic Ultrasound Sensor, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring – year: 2019 ident: bib0360 article-title: Highly sensitive miniature all-silica Fiber tip fabry-perot pressure sensor publication-title: IEEE Photon. Technol. Lett. – volume: 75 start-page: 147 year: 2004 end-page: 179 ident: bib0570 article-title: Earthquake losses due to ground failure publication-title: Eng. Geol. – start-page: 1 year: 2017 end-page: 4 ident: bib0610 article-title: Application of FBG sensing technique for monitoring and early warning system of high-speed railway track conditions publication-title: 2017 25th Optical Fiber Sensors Conference (OFS) – volume: 9 start-page: 1698 year: 2015 end-page: 1702 ident: bib0510 article-title: The rail traffic management with usage of C-OTDR monitoring systems publication-title: Int. J. Comput. Electr. Autom. Control Inf. Eng. – volume: 53 start-page: 943 year: 2013 end-page: 957 ident: bib0105 article-title: Experimental investigation of Wheel/Rail rolling contact at railhead edge publication-title: Exp. Mech. – volume: 3 start-page: 74 year: 2013 end-page: 80 ident: bib0210 article-title: New approach to the strain analysis of bragg grating sensors publication-title: Photonic Sens. – year: 2018 ident: bib0540 article-title: Fibre Optic Rail Pad Sensor Based Wheel Flat Identification – volume: 365 start-page: 303 year: 2007 end-page: 315 ident: bib0045 article-title: An introduction to structural health monitoring publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. – year: 2017 ident: bib0715 article-title: Distributed fiber optic sensors for the monitoring of a tunnel crossing a landslide publication-title: EGU General Assembly Conference Abstracts – year: 2017 ident: bib0130 article-title: Vision Based Rail Track Extraction and Monitoring Through Drone Imagery – volume: 4 start-page: 173 year: 2014 end-page: 179 ident: bib0665 article-title: Rail expansion devices monitored by FBG sensors on an urban railway viaduct publication-title: Photonic Sens. – year: 2010 ident: bib0155 article-title: Short History of Laser Development – volume: 15 start-page: 654 year: 1997 end-page: 662 ident: bib0165 article-title: Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements publication-title: J. Light. Technol. – volume: 16 start-page: 1401 year: 2013 end-page: 1409 ident: bib0655 article-title: Safety monitoring of railway tunnel construction using FBG sensing technology publication-title: Adv. Struct. Eng. – volume: 47 start-page: 1688 year: 1999 end-page: 1692 ident: bib0690 article-title: Finite-state Markov model for Rayleigh fading channels publication-title: IEEE Trans. Commun. – start-page: 259 year: 2014 end-page: 264 ident: bib0485 article-title: Composite railway health monitoring system based on fiber optic bragg grating sensing array publication-title: 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing – volume: 40 start-page: 98 year: 2013 end-page: 102 ident: bib0090 article-title: Detection of crack growth in rail steel using acoustic emission publication-title: Ironmak. Steelmak. – start-page: 99 year: 2016 end-page: 102 ident: bib0370 article-title: Ultrasound generation from a side-polished optical fiber publication-title: 2016 International Symposium on Flexible Automation (ISFA) – start-page: 339 year: 2014 end-page: 342 ident: bib0530 article-title: Measurement of acoustic noise in field-deployed fiber optic cables publication-title: 2014 European Frequency and Time Forum (EFTF), IEEE – volume: 56 start-page: 1751 year: 2013 end-page: 1757 ident: bib0630 article-title: Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory publication-title: Eng. Struct. – year: 2008 ident: bib0030 article-title: Health Monitoring of Bridges – volume: 2016 start-page: 10 year: 2016 ident: bib0675 article-title: Real-time distributed strain monitoring of a Railway Bridge during train passage by using a distributed optical Fiber sensor based on brillouin optical correlation domain analysis publication-title: J. Sens. – volume: 1 start-page: 107 year: 1989 end-page: 108 ident: bib0275 article-title: Tensile strain dependence of Brillouin frequency shift in silica optical fibers publication-title: IEEE Photonics Technol. Lett. – volume: 8 year: 2015 ident: bib0405 article-title: Current and future applications of distributed acoustic sensing as a new reservoir geophysics tool publication-title: Open Pet. Eng. J. – volume: 15 start-page: 1263 year: 1997 end-page: 1276 ident: bib0195 article-title: Fiber Bragg grating technology fundamentals and overview publication-title: J. Light. Technol. – year: 2003 ident: bib0190 article-title: Response of a Fiber Bragg Grating Ultrasonic Sensor – volume: 123 start-page: 337 year: 2005 end-page: 342 ident: bib0170 article-title: Distributed fiber-optic frequency-domain Brillouin sensing publication-title: Sens. Actuators A Phys. – volume: 8 start-page: 1269 year: 1990 end-page: 1272 ident: bib0280 article-title: First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy publication-title: J. Light. Technol. – volume: 9 start-page: 634 year: 2015 end-page: 637 ident: bib0515 article-title: Monitoring the railways by means of C-OTDR technology publication-title: Int. J. Mech. Aerosp. Ind. Mech. Eng. – year: 2010 ident: bib0550 article-title: Low-cost self-referenced all-fibre polarimetric current sensor for the monitoring of current in the railway catenary publication-title: EWOFS’10) Fourth European Workshop on Optical Fibre Sensors, SPIE – volume: 14 start-page: 205 year: 2009 end-page: 221 ident: bib0020 article-title: The impact of climate change and weather on transport: an overview of empirical findings publication-title: Transp. Res. D Transp. Environ. – volume: 78 start-page: 543 year: 2014 end-page: 603 ident: bib0440 article-title: Brillouin scattering and its application in geosciences publication-title: Rev. Mineral. Geochem. – volume: 123 start-page: 337 year: 2005 ident: 10.1016/j.sna.2019.111728_bib0170 article-title: Distributed fiber-optic frequency-domain Brillouin sensing publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2005.02.025 – volume: 1 start-page: 107 year: 1989 ident: 10.1016/j.sna.2019.111728_bib0275 article-title: Tensile strain dependence of Brillouin frequency shift in silica optical fibers publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/68.34756 – volume: 52 start-page: 187 year: 2001 ident: 10.1016/j.sna.2019.111728_bib0425 article-title: Capabilities and limitations of coherent optical frequency-domain reflectometry publication-title: J. Electr. Eng. Bratislava – volume: 15 start-page: 4996 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0075 article-title: Sensor4PRI: A sensor platform for the protection of railway infrastructures publication-title: Sensors doi: 10.3390/s150304996 – start-page: 1 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0610 article-title: Application of FBG sensing technique for monitoring and early warning system of high-speed railway track conditions publication-title: 2017 25th Optical Fiber Sensors Conference (OFS) – volume: 20 start-page: 11109 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0325 article-title: All-fiber Mach-Zehnder interferometers for sensing applications publication-title: Opt. Express doi: 10.1364/OE.20.011109 – volume: 48 start-page: 354 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0520 article-title: Fibre optic track vibration monitoring system publication-title: Opt. Quantum Electron. doi: 10.1007/s11082-016-0616-9 – year: 2000 ident: 10.1016/j.sna.2019.111728_bib0225 – year: 2013 ident: 10.1016/j.sna.2019.111728_bib0300 – year: 2010 ident: 10.1016/j.sna.2019.111728_bib0550 article-title: Low-cost self-referenced all-fibre polarimetric current sensor for the monitoring of current in the railway catenary publication-title: EWOFS’10) Fourth European Workshop on Optical Fibre Sensors, SPIE doi: 10.1117/12.866433 – start-page: 1 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0565 article-title: A temperature compensated fibre Bragg grating (FBG)-based sensor system for condition monitoring of electrified railway pantograph publication-title: 2017 25th Optical Fiber Sensors Conference (OFS) – volume: 64 start-page: 301 year: 1998 ident: 10.1016/j.sna.2019.111728_bib0695 article-title: Independent component analysis by general nonlinear Hebbian-like learning rules publication-title: Signal Process. doi: 10.1016/S0165-1684(97)00197-7 – volume: 48 start-page: 871 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0185 article-title: Review: optical fiber sensors for civil engineering applications publication-title: Mater. Struct. doi: 10.1617/s11527-013-0201-7 – year: 2017 ident: 10.1016/j.sna.2019.111728_bib0230 – volume: 27 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0635 article-title: Railway track component condition monitoring using optical fibre Bragg grating sensors publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/27/5/055201 – volume: 18 start-page: 980 year: 2018 ident: 10.1016/j.sna.2019.111728_bib0340 article-title: Embedded distributed optical fiber sensors in reinforced concrete structures—a case study publication-title: Sensors doi: 10.3390/s18040980 – volume: 253 start-page: 91 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0680 article-title: An optical fiber intrusion detection system for railway security publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2016.11.026 – year: 2015 ident: 10.1016/j.sna.2019.111728_bib0590 – start-page: 87110G year: 2013 ident: 10.1016/j.sna.2019.111728_bib0700 publication-title: Int. Soc. Opt. Photon. – volume: 2012 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0445 article-title: Brillouin distributed fiber sensors: an overview and applications publication-title: J. Sens. doi: 10.1155/2012/204121 – volume: 1 start-page: 54 year: 2011 ident: 10.1016/j.sna.2019.111728_bib0220 article-title: Development of fully-distributed fiber sensors based on Brillouin scattering publication-title: Photonic Sens. doi: 10.1007/s13320-010-0019-7 – start-page: 1 year: 2009 ident: 10.1016/j.sna.2019.111728_bib0430 article-title: Optical frequency domain reflectometry: a review publication-title: 2009 11th International Conference on Transparent Optical Networks, IEEE – volume: 54 start-page: 104 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0010 article-title: Deformation behavior of ballasted track during earthquakes publication-title: Quart. Report RTRI doi: 10.2219/rtriqr.54.104 – volume: 15 start-page: 1263 year: 1997 ident: 10.1016/j.sna.2019.111728_bib0195 article-title: Fiber Bragg grating technology fundamentals and overview publication-title: J. Light. Technol. doi: 10.1109/50.618320 – start-page: 699 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0100 article-title: Rail health monitoring using acoustic emission technique based on NMF and RVM publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE doi: 10.1109/I2MTC.2015.7151353 – volume: 19 start-page: 574 year: 2019 ident: 10.1016/j.sna.2019.111728_bib0460 article-title: Comparative experimental study of a high-temperature raman-based distributed optical fiber sensor with different special fibers publication-title: Sensors doi: 10.3390/s19030574 – start-page: 99 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0370 article-title: Ultrasound generation from a side-polished optical fiber publication-title: 2016 International Symposium on Flexible Automation (ISFA) doi: 10.1109/ISFA.2016.7790143 – volume: 63 start-page: 189 year: 2002 ident: 10.1016/j.sna.2019.111728_bib0575 article-title: Earthquake-induced landslides in Central America publication-title: Eng. Geol. doi: 10.1016/S0013-7952(01)00081-3 – start-page: 339 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0530 article-title: Measurement of acoustic noise in field-deployed fiber optic cables publication-title: 2014 European Frequency and Time Forum (EFTF), IEEE – year: 2005 ident: 10.1016/j.sna.2019.111728_bib0395 – volume: 25 start-page: 913 year: 1989 ident: 10.1016/j.sna.2019.111728_bib0240 article-title: Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors publication-title: Electron. Lett. doi: 10.1049/el:19890612 – volume: 18 start-page: 1353 year: 2018 ident: 10.1016/j.sna.2019.111728_bib0175 article-title: All-optical photoacoustic sensors for steel rebar corrosion monitoring publication-title: Sensors doi: 10.3390/s18051353 – volume: 7 start-page: 83 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0205 article-title: Tilted fiber Bragg grating sensors publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201100039 – year: 2018 ident: 10.1016/j.sna.2019.111728_bib0330 – volume: 2010 year: 2010 ident: 10.1016/j.sna.2019.111728_bib0475 article-title: Vibration detection using optical fiber sensors publication-title: J. Sens. doi: 10.1155/2010/936487 – start-page: 3 year: 2018 ident: 10.1016/j.sna.2019.111728_bib0150 – year: 2017 ident: 10.1016/j.sna.2019.111728_bib0145 article-title: Studies on geotechnical properties of subsoil in south east coastal region of India publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/263/3/032009 – volume: 24 start-page: 256 year: 2010 ident: 10.1016/j.sna.2019.111728_bib0085 article-title: Rail–wheel interaction monitoring using Acoustic Emission: a laboratory study of normal rolling signals with natural rail defects publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2009.06.007 – year: 2008 ident: 10.1016/j.sna.2019.111728_bib0525 – year: 2019 ident: 10.1016/j.sna.2019.111728_bib0595 – volume: 62 start-page: 679 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0260 article-title: Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling publication-title: Geophys. Prospect. doi: 10.1111/1365-2478.12116 – start-page: 259 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0485 article-title: Composite railway health monitoring system based on fiber optic bragg grating sensing array publication-title: 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing – volume: 8 start-page: 1269 year: 1990 ident: 10.1016/j.sna.2019.111728_bib0280 article-title: First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy publication-title: J. Light. Technol. doi: 10.1109/50.59150 – volume: 2 start-page: 357 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0415 article-title: SHM by DOFS in civil engineering: a review publication-title: Struct. Monit. Maint. – volume: 25 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0580 article-title: Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors publication-title: Smart Mater. Struct. – start-page: 1 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0640 article-title: Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR publication-title: 2017 25th Optical Fiber Sensors Conference (OFS) – volume: 1 start-page: 201 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0115 article-title: The behaviour of railway level crossings: insights through field monitoring publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2014.05.002 – volume: 2018 start-page: 14 year: 2018 ident: 10.1016/j.sna.2019.111728_bib0670 article-title: Performance deterioration of heavy-haul railway bridges under fatigue loading monitored by a multisensor system publication-title: J. Sens. doi: 10.1155/2018/5465391 – volume: 7 start-page: 11620 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0255 article-title: Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study publication-title: Sci. Rep. doi: 10.1038/s41598-017-11986-4 – volume: 791-793 start-page: 1901 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0660 article-title: Research on evaluation method of the bridge strengthening effect based on Fiber optic sensor publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.791-793.1901 – volume: 47 start-page: 1688 year: 1999 ident: 10.1016/j.sna.2019.111728_bib0690 article-title: Finite-state Markov model for Rayleigh fading channels publication-title: IEEE Trans. Commun. doi: 10.1109/26.803503 – volume: 116 start-page: 33 year: 2004 ident: 10.1016/j.sna.2019.111728_bib0315 article-title: An investigation of interference/intensity demodulated fiber-optic Fabry–Perot cavity sensor publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2004.03.021 – year: 2007 ident: 10.1016/j.sna.2019.111728_bib0070 – start-page: 105 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0125 article-title: Railroad track transitions with multidepth deflectometers and strain gauges publication-title: Transp. Res. Rec. J. Transp. Res. Board doi: 10.3141/2448-13 – year: 2015 ident: 10.1016/j.sna.2019.111728_bib0615 – volume: 8 start-page: 362 year: 2003 ident: 10.1016/j.sna.2019.111728_bib0385 article-title: Fiber optic sensors for bridge monitoring publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)1084-0702(2003)8:6(362) – volume: 52 start-page: 3770 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0585 article-title: Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors publication-title: Appl. Opt. doi: 10.1364/AO.52.003770 – volume: 2 start-page: 1824 year: 2007 ident: 10.1016/j.sna.2019.111728_bib0060 article-title: Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications publication-title: Struct. Health Monit. – volume: 14 start-page: R49 year: 2003 ident: 10.1016/j.sna.2019.111728_bib0200 article-title: Optical fibre long-period grating sensors: characteristics and application publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/14/5/201 – volume: 30 start-page: 1161 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0435 article-title: Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs publication-title: J. Light. Technol. doi: 10.1109/JLT.2011.2170813 – volume: 2016 start-page: 10 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0675 article-title: Real-time distributed strain monitoring of a Railway Bridge during train passage by using a distributed optical Fiber sensor based on brillouin optical correlation domain analysis publication-title: J. Sens. doi: 10.1155/2016/9137531 – volume: 79 start-page: 164 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0365 article-title: Fiber optic ultrasound transmitters and their applications publication-title: Measurement doi: 10.1016/j.measurement.2015.10.002 – volume: 16 start-page: 262 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0375 article-title: Assessment of embedded fiber Bragg gratings for structural health monitoring of composites publication-title: Struct. Health Monit. doi: 10.1177/1475921716665563 – volume: 53 start-page: 943 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0105 article-title: Experimental investigation of Wheel/Rail rolling contact at railhead edge publication-title: Exp. Mech. doi: 10.1007/s11340-012-9701-6 – year: 2016 ident: 10.1016/j.sna.2019.111728_bib0265 article-title: Optical frequency domain reflectometry: principles and applications in fiber optic sensing, Fiber optic Sensors and Applications XIII publication-title: Int. Soc. Opt. Photon. – volume: 10 start-page: 1196 year: 1992 ident: 10.1016/j.sna.2019.111728_bib0245 article-title: Brillouin characterization of fiber strain in bent slot-type optical-fiber cables publication-title: J. Light. Technol. doi: 10.1109/50.156868 – volume: 56 start-page: 1751 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0630 article-title: Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2013.07.005 – volume: 365 start-page: 303 year: 2007 ident: 10.1016/j.sna.2019.111728_bib0045 article-title: An introduction to structural health monitoring publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2006.1928 – volume: 37 start-page: 1735 year: 1998 ident: 10.1016/j.sna.2019.111728_bib0420 article-title: High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter publication-title: Appl. Opt. doi: 10.1364/AO.37.001735 – volume: 16 start-page: 1401 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0655 article-title: Safety monitoring of railway tunnel construction using FBG sensing technology publication-title: Adv. Struct. Eng. doi: 10.1260/1369-4332.16.8.1401 – volume: 15 start-page: 654 year: 1997 ident: 10.1016/j.sna.2019.111728_bib0165 article-title: Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements publication-title: J. Light. Technol. doi: 10.1109/50.566687 – start-page: 139 year: 1991 ident: 10.1016/j.sna.2019.111728_bib0310 – volume: 53 start-page: 1850 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0490 article-title: Development of a new time domain-based algorithm for train detection and axle counting publication-title: Veh. Syst. Dyn. doi: 10.1080/00423114.2015.1084427 – volume: 16 start-page: 99 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0180 article-title: Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials publication-title: Sensors doi: 10.3390/s16010099 – volume: 23 start-page: 2081 year: 2005 ident: 10.1016/j.sna.2019.111728_bib0710 article-title: Distributed fiber-optic intrusion sensor system publication-title: J. Light. Technol. doi: 10.1109/JLT.2005.849924 – year: 2015 ident: 10.1016/j.sna.2019.111728_bib0250 – volume: 14 start-page: 7451 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0465 article-title: Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review publication-title: Sensors doi: 10.3390/s140407451 – volume: 8 start-page: 1 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0470 article-title: Combination of phase-sensitive OTDR and michelson interferometer for nuisance alarm rate reducing and event identification publication-title: IEEE Photon. J. – start-page: 351 year: 2010 ident: 10.1016/j.sna.2019.111728_bib0685 article-title: Intelligent acoustic and vibration recognition/alert systems for security breaching detection, close proximity danger identification, and perimeter protection publication-title: 2010 IEEE International Conference on Technologies for Homeland Security (HST), IEEE doi: 10.1109/THS.2010.5654931 – volume: 9 start-page: 634 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0515 article-title: Monitoring the railways by means of C-OTDR technology publication-title: Int. J. Mech. Aerosp. Ind. Mech. Eng. – year: 2011 ident: 10.1016/j.sna.2019.111728_bib0025 – start-page: 76530F year: 2010 ident: 10.1016/j.sna.2019.111728_bib0345 article-title: Strain calibration of optical FBG-based strain sensors, fourth european workshop on optical fibre sensors publication-title: Int. Soc. Opt. Photon. – volume: 53 start-page: 157 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0040 article-title: Prediction of compressive strength of self-compacting concrete using intelligent computational modeling publication-title: CMC-Comput. Mater. Continua – year: 2019 ident: 10.1016/j.sna.2019.111728_bib0140 – start-page: 362 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0705 article-title: OptaSense: fibre optic distributed acoustic sensing for border monitoring publication-title: 2012 European Intelligence and Security Informatics Conference, IEEE doi: 10.1109/EISIC.2012.59 – year: 2014 ident: 10.1016/j.sna.2019.111728_bib0400 article-title: The evolution of optical fiber sensors technologies during the 35 last years and their applications in structure health monitoring publication-title: EWSHM-7th European Workshop on Structural Health Monitoring – volume: 4 start-page: 173 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0665 article-title: Rail expansion devices monitored by FBG sensors on an urban railway viaduct publication-title: Photonic Sens. doi: 10.1007/s13320-014-0163-6 – volume: 13 start-page: 4808 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0535 article-title: Wheel flat detection in high-speed railway systems using Fiber bragg gratings publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2274008 – volume: 18 start-page: 1879 year: 2006 ident: 10.1016/j.sna.2019.111728_bib0455 article-title: Raman-based distributed temperature sensor with simplex coding and link optimization publication-title: IEEE Photo. Technol. Lett. doi: 10.1109/LPT.2006.881239 – volume: 4 start-page: 135 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0500 article-title: Railway structure monitoring solutions using fibre Bragg grating sensors publication-title: Int. J. Rail Transp. doi: 10.1080/23248378.2016.1184598 – volume: 229 start-page: 280 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0645 article-title: Dynamic monitoring of railway track displacement using an optical system publication-title: Arch. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 1989-1996 doi: 10.1177/0954409713509980 – volume: 75 start-page: 147 year: 2004 ident: 10.1016/j.sna.2019.111728_bib0570 article-title: Earthquake losses due to ground failure publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2004.05.006 – year: 2015 ident: 10.1016/j.sna.2019.111728_bib0450 article-title: Brillouin scattering in optical fibers and its application to distributed sensors – year: 2019 ident: 10.1016/j.sna.2019.111728_bib0360 article-title: Highly sensitive miniature all-silica Fiber tip fabry-perot pressure sensor publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2019.2904420 – volume: 292 start-page: 1 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0355 article-title: Distributed fiber optic sensing technologies and applications–an overview publication-title: ACI Spec. Publ. – year: 2014 ident: 10.1016/j.sna.2019.111728_bib0560 article-title: A fibre optic sensor instrumented pantograph as part of a continuous structural health monitoring system for railway overhead lines – volume: 16 start-page: 245 year: 2009 ident: 10.1016/j.sna.2019.111728_bib0005 article-title: Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south‐east United Kingdom publication-title: Meteorol. Appl. doi: 10.1002/met.114 – volume: 13 start-page: 2555 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0650 article-title: Commissioning and evaluation of a fiber-optic sensor system for bridge monitoring publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2256599 – volume: 60-61 start-page: 14 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0545 article-title: Real-time monitoring of railway infrastructures using fibre Bragg grating sensors publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2015.01.003 – start-page: 185 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0380 article-title: Structural health monitoring fiber optic sensors – year: 2010 ident: 10.1016/j.sna.2019.111728_bib0155 – volume: 21 start-page: 463 year: 2018 ident: 10.1016/j.sna.2019.111728_bib0035 article-title: Comparison of machine learning techniques to predict compressive strength of concrete publication-title: Comput. Concr. – volume: 26 start-page: 2055 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0505 article-title: Real-time position and speed monitoring of trains using phase-sensitive OTDR publication-title: IEEE Photon.Technol. Lett. doi: 10.1109/LPT.2014.2346760 – volume: 3 start-page: 154 year: 2010 ident: 10.1016/j.sna.2019.111728_bib0065 article-title: Condition monitoring of railway track using in-service vehicle publication-title: J. Mech. Syst. Transp. Logist. doi: 10.1299/jmtl.3.154 – volume: 37 start-page: 418 year: 2007 ident: 10.1016/j.sna.2019.111728_bib0135 article-title: A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/TSMCC.2007.893278 – volume: 8 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0405 article-title: Current and future applications of distributed acoustic sensing as a new reservoir geophysics tool publication-title: Open Pet. Eng. J. doi: 10.2174/1874834101508010272 – volume: 60 start-page: 104 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0285 article-title: On-specimen strain measurement with fiber optic distributed sensing publication-title: Measurement doi: 10.1016/j.measurement.2014.09.054 – volume: 23 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0290 article-title: An ultra-fast fiber optic pressure sensor for blast event measurements publication-title: Meas. Sci. Technol. – year: 2018 ident: 10.1016/j.sna.2019.111728_bib0540 – volume: 14 start-page: 70 year: 2018 ident: 10.1016/j.sna.2019.111728_bib0600 article-title: Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: lab and field evaluation publication-title: Transp. Geotech. doi: 10.1016/j.trgeo.2017.10.002 – year: 2003 ident: 10.1016/j.sna.2019.111728_bib0190 – start-page: 415 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0720 – volume: 39 start-page: 693 year: 1981 ident: 10.1016/j.sna.2019.111728_bib0270 article-title: Optical frequency domain reflectometry in single‐mode fiber publication-title: Appl. Phys. Lett. doi: 10.1063/1.92872 – year: 2017 ident: 10.1016/j.sna.2019.111728_bib0130 – volume: 52 start-page: 141 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0110 article-title: Measurement of vertical and longitudinal rail displacements using digital image correlation publication-title: Can. Geotech. J. doi: 10.1139/cgj-2013-0403 – volume: 41 start-page: 226 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0555 article-title: Pantograph–catenary monitoring by means of fibre Bragg grating sensors: results from tests in an underground line publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2013.06.030 – volume: 38 start-page: 39 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0605 article-title: Design and development of structural health monitoring system for smart railroad-gauge-facility using FBG sensors publication-title: Exp. Tech. doi: 10.1111/j.1747-1567.2012.00844.x – volume: 22 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0350 article-title: Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/22/7/075027 – year: 2013 ident: 10.1016/j.sna.2019.111728_bib0080 – volume: 14 start-page: 205 year: 2009 ident: 10.1016/j.sna.2019.111728_bib0020 article-title: The impact of climate change and weather on transport: an overview of empirical findings publication-title: Transp. Res. D Transp. Environ. doi: 10.1016/j.trd.2008.12.004 – volume: 17 start-page: 2511 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0410 article-title: A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications publication-title: Sensors doi: 10.3390/s17112511 – volume: 17 start-page: 2368 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0215 article-title: Review and Analysis of peak tracking techniques for fiber Bragg grating sensors publication-title: Sensors doi: 10.3390/s17102368 – year: 1922 ident: 10.1016/j.sna.2019.111728_bib0050 – volume: 45 start-page: 1077 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0295 article-title: An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors publication-title: Measurement doi: 10.1016/j.measurement.2012.01.034 – year: 2016 ident: 10.1016/j.sna.2019.111728_bib0495 – volume: 4 start-page: 81 year: 2005 ident: 10.1016/j.sna.2019.111728_bib0120 article-title: Structural health monitoring in the railway industry: a review publication-title: Struct. Health Monit. doi: 10.1177/1475921705049764 – volume: 12 start-page: 8601 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0235 article-title: Recent progress in distributed fiber optic sensors publication-title: Sensors doi: 10.3390/s120708601 – start-page: 76533M year: 2010 ident: 10.1016/j.sna.2019.111728_bib0480 article-title: Real-time monitoring of railway traffic using fiber bragg gratings, fourth European Workshop on optical fibre sensors publication-title: Int. Soc. Opt. Photon. – start-page: 226 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0320 article-title: Mach-Zehnder interferometer as a temperature sensor based on the nested fiber ring resonator publication-title: 2013 Seventh International Conference on Sensing Technology (ICST), IEEE doi: 10.1109/ICSensT.2013.6727647 – volume: 48 start-page: 1775 year: 2012 ident: 10.1016/j.sna.2019.111728_bib0015 article-title: Climate change and infrastructure performance: should we worry about? publication-title: Procedia-Soc. Behav. Sci. doi: 10.1016/j.sbspro.2012.06.1152 – volume: 16 start-page: 6346 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0620 article-title: Development of level sensors based on Fiber bragg grating for railway track differential settlement measurement publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2574622 – year: 2008 ident: 10.1016/j.sna.2019.111728_bib0030 – volume: 21 start-page: 333 year: 2003 ident: 10.1016/j.sna.2019.111728_bib0390 article-title: A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan Strait Tunnel Project publication-title: Mar. Georesources Geotechnol. doi: 10.1080/713773406 – start-page: 1 year: 2017 ident: 10.1016/j.sna.2019.111728_bib0625 article-title: Real-time monitoring of railroad track tension using a fiber Bragg grating-based strain sensor publication-title: Instrum. Sci. Technol. – volume: 78 start-page: 543 year: 2014 ident: 10.1016/j.sna.2019.111728_bib0440 article-title: Brillouin scattering and its application in geosciences publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2014.78.14 – volume: 40 start-page: 98 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0090 article-title: Detection of crack growth in rail steel using acoustic emission publication-title: Ironmak. Steelmak. doi: 10.1179/1743281212Y.0000000051 – volume: 3 start-page: 74 year: 2013 ident: 10.1016/j.sna.2019.111728_bib0210 article-title: New approach to the strain analysis of bragg grating sensors publication-title: Photonic Sens. doi: 10.1007/s13320-012-0091-2 – year: 2007 ident: 10.1016/j.sna.2019.111728_bib0055 – start-page: 1046 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0095 article-title: An investigation on rail health monitoring using acoustic emission technique by tensile test publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE doi: 10.1109/I2MTC.2015.7151415 – volume: 9 start-page: 1698 year: 2015 ident: 10.1016/j.sna.2019.111728_bib0510 article-title: The rail traffic management with usage of C-OTDR monitoring systems publication-title: Int. J. Comput. Electr. Autom. Control Inf. Eng. – year: 2017 ident: 10.1016/j.sna.2019.111728_bib0715 article-title: Distributed fiber optic sensors for the monitoring of a tunnel crossing a landslide publication-title: EGU General Assembly Conference Abstracts – volume: 16 start-page: 748 year: 2016 ident: 10.1016/j.sna.2019.111728_bib0160 article-title: A review of distributed optical fiber sensors for civil engineering applications publication-title: Sensors doi: 10.3390/s16050748 – year: 1993 ident: 10.1016/j.sna.2019.111728_bib0335 – volume: 27 start-page: 547 year: 1988 ident: 10.1016/j.sna.2019.111728_bib0305 article-title: Optical fiber fabry-perot sensors publication-title: Appl. Opt. doi: 10.1364/AO.27.000547 |
SSID | ssj0003377 |
Score | 2.6351063 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS... In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111728 |
SubjectTerms | Damage detection Degradation Detection Electromagnetic interference Fiber optic sensors Fiber optics Infrastructure Inspection Monitoring systems Optical fibers Railway bridges Railway networks Railway track Railway tunnels Railways Real time Sensors Shafts (machine elements) State-of-the-art reviews Structural health monitoring Traffic speed Train Weight reduction |
Title | A review of railway infrastructure monitoring using fiber optic sensors |
URI | https://dx.doi.org/10.1016/j.sna.2019.111728 https://www.proquest.com/docview/2436433345 |
Volume | 303 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwIZkmsfPwWFWUAqILVOpmOY6NikpSJUWIhd-OLw9eQh1Yo7OVnM_f3Sl33yF0xrTk0jGK0EAqwgKfEykpJ1FiEiXdIHF8aE6-mwTjKbuZ-bMWGja9MFBWWWN_heklWtdP-rU2-8v5vH_v2NSBeRZcObU5SgSMn4yFYOUX719lHpSW0xdBmIB082ezrPEqUqAecjkARwgD2f_2Tb9QunQ9ox20XceMeFC91i5q6XQPbX1jEtxHVwNcNaHgzOBczhev8g1b48llRRD7kmv8XF5fkMdQ7f6IDVSL4MyChsKFTWezvDhA09Hlw3BM6hkJRFHPXxGTUB2Z0A-l_U5XmYg70oOwIUgo9SS0ncbghilnccKMsb4pBMo5V9vQLYoTeojaaZbqI4SBCc0GD9yoxGUxd2Kjja9pENplxlNRBzmNdoSqCcRhjsVCNJViT8IqVIBCRaXQDjr_XLKs2DPWCbNG5eKHCQiL7uuWdZvjEfX9K4THqA21KGX-8f92PUGbHmTWZbVZF7XtWelTG36s4l5pXz20Mbi-HU8-AFd32JM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFMMBuTACala26SPHCfE6GDbBZC4RWmaoKHRTR0I8e-J-0CAEAeuVRy1jvPZVu3PAGdMSy5doxwaSuWwMOCOlJQ7cWYyJb0wcwNsTh5PwuSeXT8EDy24aHphsKyyxv4K00u0rp_0am32FtNp79a1qQPzLbhyanOUmK7AKrJTBW1Y7Q9vksknIFNaDmDE9Q4KND83yzKvZY7sQx5H7IhwJvvv7ukHUJfeZ7AFm3XYSPrVm21DS-c7sPGFTHAXrvqk6kMhc0MKOZ29yXdi7aeQFUfsa6HJc3mDcT3BgvdHYrBghMwtbiiytBntvFjuwf3g8u4iceoxCY6ifvDimIzq2ERBJO13esrE3JU-Rg5hRqkvsfM0RU9MOUszZox1TxGyznnaRm9xmtF9aOfzXB8AQTI0Gz9wozKPpdxNjTaBpmFkxYyv4g64jXaEqjnEcZTFTDTFYk_CKlSgQkWl0A6cf4osKgKNvxazRuXimxUIC_B_iXWb4xH1FVwKn1EbbVHKgsP_7XoKa8ndeCRGw8nNEaz7mGiXxWddaNtz08c2GnlJT2pr-wDV69tE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+railway+infrastructure+monitoring+using+fiber+optic+sensors&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Du%2C+Cong&rft.au=Dutta%2C+Susom&rft.au=Kurup%2C+Pradeep&rft.au=Yu%2C+Tzuyang&rft.date=2020-03-01&rft.issn=0924-4247&rft.volume=303&rft.spage=111728&rft_id=info:doi/10.1016%2Fj.sna.2019.111728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2019_111728 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |