A review of railway infrastructure monitoring using fiber optic sensors

[Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitori...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 303; p. 111728
Main Authors Du, Cong, Dutta, Susom, Kurup, Pradeep, Yu, Tzuyang, Wang, Xingwei
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0924-4247
1873-3069
DOI10.1016/j.sna.2019.111728

Cover

Loading…
Abstract [Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitoring is briefly discussed.•Aspects of the FOS design, installation, performance/accuracy, signal processing and data analysis algorithms are discussed. In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed.
AbstractList In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed.
[Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitoring is briefly discussed.•Aspects of the FOS design, installation, performance/accuracy, signal processing and data analysis algorithms are discussed. In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed.
ArticleNumber 111728
Author Wang, Xingwei
Du, Cong
Kurup, Pradeep
Dutta, Susom
Yu, Tzuyang
Author_xml – sequence: 1
  givenname: Cong
  surname: Du
  fullname: Du, Cong
  organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA 01854, USA
– sequence: 2
  givenname: Susom
  surname: Dutta
  fullname: Dutta, Susom
  organization: Department of Civil and Environmental Engineering, University of Massachusetts Lowell, MA 01854, USA
– sequence: 3
  givenname: Pradeep
  surname: Kurup
  fullname: Kurup, Pradeep
  organization: Department of Civil and Environmental Engineering, University of Massachusetts Lowell, MA 01854, USA
– sequence: 4
  givenname: Tzuyang
  surname: Yu
  fullname: Yu, Tzuyang
  organization: Department of Civil and Environmental Engineering, University of Massachusetts Lowell, MA 01854, USA
– sequence: 5
  givenname: Xingwei
  surname: Wang
  fullname: Wang, Xingwei
  email: xingwei_wang@uml.edu
  organization: Department of Electrical and Computer Engineering, University of Massachusetts Lowell, MA 01854, USA
BookMark eNp9kL1OwzAURi1UJNrCA7BZYk7xX-JETFUFBakSC8yW49jIUWsX26Hq2-MoTAxd7l2-cz_dswAz550G4B6jFUa4euxX0ckVQbhZYYw5qa_AHNecFhRVzQzMUUNYwQjjN2ARY48QopTzOdiuYdA_Vp-gNzBIuz_JM7TOBBlTGFQagoYH72zywbovOMRxGtvqAP0xWQWjdtGHeAuujdxHffe3l-Dz5flj81rs3rdvm_WuUJSUqTAd1bXhJZe5HStTN0gSxDGqOkqJrKuybBFhhDas7ZgxFa952eSoLnFTtx1dgofp7jH470HHJHo_BJcrBWG0YpRSVuYUn1Iq-BiDNkLZJJP1Lo0_CozEaE30IlsTozUxWcsk_kcegz3IcL7IPE2Mzo9nl0FEZbVTurNBqyQ6by_Qv7xUhh0
CitedBy_id crossref_primary_10_3390_s24237818
crossref_primary_10_3390_sym13122251
crossref_primary_10_1364_OE_420758
crossref_primary_10_1016_j_engappai_2023_106003
crossref_primary_10_3390_s23041930
crossref_primary_10_1166_jno_2022_3217
crossref_primary_10_1063_5_0194757
crossref_primary_10_1109_TIM_2022_3188032
crossref_primary_10_1016_j_conbuildmat_2023_132084
crossref_primary_10_1016_j_ymssp_2022_109855
crossref_primary_10_1016_j_engstruct_2022_114143
crossref_primary_10_1016_j_conbuildmat_2021_124324
crossref_primary_10_3390_su12229428
crossref_primary_10_1016_j_advengsoft_2024_103802
crossref_primary_10_3390_s22218320
crossref_primary_10_1016_j_optlastec_2024_110879
crossref_primary_10_1016_j_optlastec_2023_109227
crossref_primary_10_3390_app15073451
crossref_primary_10_1108_SR_02_2021_0035
crossref_primary_10_1088_1361_6501_ac4f00
crossref_primary_10_1016_j_ymssp_2021_107725
crossref_primary_10_1109_JSEN_2023_3295429
crossref_primary_10_1007_s40534_021_00269_4
crossref_primary_10_1061_JSENDH_STENG_12151
crossref_primary_10_1007_s41870_023_01645_5
crossref_primary_10_1016_j_conbuildmat_2022_127271
crossref_primary_10_1002_adpr_202100371
crossref_primary_10_46670_JSST_2022_31_1_24
crossref_primary_10_1016_j_optcom_2021_126981
crossref_primary_10_1016_j_ymssp_2022_109568
crossref_primary_10_3390_s24113602
crossref_primary_10_1109_LPT_2022_3164636
crossref_primary_10_3390_su15065356
crossref_primary_10_1177_1045389X20987002
crossref_primary_10_3390_s23094334
crossref_primary_10_3390_s22197550
crossref_primary_10_3390_s23208346
crossref_primary_10_1109_JSEN_2023_3309648
crossref_primary_10_3390_s22197554
crossref_primary_10_1016_j_measurement_2025_116863
crossref_primary_10_1016_j_jmst_2024_12_058
crossref_primary_10_3390_s20185428
crossref_primary_10_3390_photonics9110869
crossref_primary_10_1002_ente_202000794
crossref_primary_10_1109_TIM_2023_3336173
crossref_primary_10_1007_s10115_023_02009_y
crossref_primary_10_1016_j_trpro_2023_11_859
crossref_primary_10_3390_su16010340
crossref_primary_10_3390_s23218830
crossref_primary_10_1177_13621718241272122
crossref_primary_10_1038_d41586_024_01522_6
crossref_primary_10_1007_s13320_021_0620_y
crossref_primary_10_1016_j_jobe_2023_106403
crossref_primary_10_3390_s24248205
crossref_primary_10_1364_JOSAA_510051
crossref_primary_10_1088_1361_6501_ac9152
crossref_primary_10_3390_s22093429
crossref_primary_10_1177_14759217241280904
crossref_primary_10_1093_iti_liac009
crossref_primary_10_1016_j_measurement_2024_114279
crossref_primary_10_1364_OE_489964
crossref_primary_10_3390_s24248161
crossref_primary_10_1117_1_OE_63_5_056101
crossref_primary_10_1364_AO_477412
crossref_primary_10_1177_14759217231153678
crossref_primary_10_1109_TIM_2023_3322506
crossref_primary_10_1177_1045389X221128764
crossref_primary_10_1007_s13349_024_00869_8
crossref_primary_10_1109_JSEN_2023_3347307
crossref_primary_10_1109_JSEN_2020_3020907
crossref_primary_10_1021_acssensors_0c01615
crossref_primary_10_1109_JSEN_2023_3255908
crossref_primary_10_3390_vehicles5040069
crossref_primary_10_1364_OE_544953
crossref_primary_10_1109_ACCESS_2020_2990133
crossref_primary_10_1088_1361_6501_ac20b5
crossref_primary_10_3390_ma16247512
crossref_primary_10_3390_coatings11101245
crossref_primary_10_1016_j_conbuildmat_2024_135789
crossref_primary_10_1016_j_aca_2023_341051
crossref_primary_10_1016_j_yofte_2020_102440
crossref_primary_10_1063_5_0157499
crossref_primary_10_1177_00202940211001900
crossref_primary_10_1007_s41870_022_00977_y
crossref_primary_10_1109_JSEN_2021_3120995
crossref_primary_10_3389_fsens_2020_00001
crossref_primary_10_1109_JSEN_2023_3313013
crossref_primary_10_3390_s22010296
crossref_primary_10_1080_15732479_2024_2318644
crossref_primary_10_3390_s22124466
crossref_primary_10_3390_s25061933
crossref_primary_10_3390_su152416632
crossref_primary_10_1016_j_autcon_2023_105210
crossref_primary_10_1109_JSEN_2025_3526824
crossref_primary_10_3390_s21113639
crossref_primary_10_1109_JSEN_2024_3467226
crossref_primary_10_1016_j_ijleo_2023_171294
crossref_primary_10_1016_j_measurement_2022_111543
crossref_primary_10_3390_s22072491
crossref_primary_10_1177_16878132241285631
crossref_primary_10_1016_j_esd_2022_03_012
crossref_primary_10_46670_JSST_2022_31_6_441
crossref_primary_10_3390_s22052023
crossref_primary_10_1016_j_sna_2024_116176
crossref_primary_10_1109_LPT_2023_3325428
crossref_primary_10_3788_LOP231453
crossref_primary_10_1016_j_apm_2023_05_008
crossref_primary_10_1109_JSEN_2021_3070721
crossref_primary_10_1177_03611981241239655
crossref_primary_10_3390_s21020353
crossref_primary_10_1142_S0219455420410047
crossref_primary_10_1177_14759217211007127
crossref_primary_10_1039_D5CC00293A
crossref_primary_10_1016_j_ymssp_2022_109642
crossref_primary_10_1016_j_trgeo_2025_101487
crossref_primary_10_3390_s20174689
crossref_primary_10_1016_j_reactfunctpolym_2023_105775
crossref_primary_10_1109_JIOT_2024_3390732
crossref_primary_10_3390_s21051818
crossref_primary_10_1177_14759217221149129
crossref_primary_10_3390_s23156734
crossref_primary_10_3390_app14198801
crossref_primary_10_3390_s22010153
crossref_primary_10_1016_j_measurement_2023_113482
crossref_primary_10_1088_1361_6501_ace78f
crossref_primary_10_1016_j_conbuildmat_2022_126640
crossref_primary_10_1177_09544097231176464
crossref_primary_10_3389_fphy_2022_927912
crossref_primary_10_1016_j_optlastec_2021_107069
crossref_primary_10_1016_j_aej_2023_09_031
crossref_primary_10_1093_iti_liad018
crossref_primary_10_3390_machines12080498
crossref_primary_10_1364_OE_387413
crossref_primary_10_3390_s23042194
crossref_primary_10_1016_j_autcon_2022_104242
crossref_primary_10_46670_JSST_2023_32_3_199
crossref_primary_10_1134_S002044122106004X
crossref_primary_10_1016_j_sna_2021_112859
crossref_primary_10_3390_s23115015
crossref_primary_10_1109_JSEN_2024_3389050
crossref_primary_10_3390_s23052558
crossref_primary_10_1007_s11042_023_15924_7
crossref_primary_10_1016_j_sna_2024_115422
crossref_primary_10_1109_JSEN_2022_3218182
crossref_primary_10_3390_s20154223
Cites_doi 10.1016/j.sna.2005.02.025
10.1109/68.34756
10.3390/s150304996
10.1364/OE.20.011109
10.1007/s11082-016-0616-9
10.1117/12.866433
10.1016/S0165-1684(97)00197-7
10.1617/s11527-013-0201-7
10.1088/0957-0233/27/5/055201
10.3390/s18040980
10.1016/j.sna.2016.11.026
10.1155/2012/204121
10.1007/s13320-010-0019-7
10.2219/rtriqr.54.104
10.1109/50.618320
10.1109/I2MTC.2015.7151353
10.3390/s19030574
10.1109/ISFA.2016.7790143
10.1016/S0013-7952(01)00081-3
10.1049/el:19890612
10.3390/s18051353
10.1002/lpor.201100039
10.1155/2010/936487
10.1088/1757-899X/263/3/032009
10.1016/j.ymssp.2009.06.007
10.1111/1365-2478.12116
10.1109/50.59150
10.1016/j.trgeo.2014.05.002
10.1155/2018/5465391
10.1038/s41598-017-11986-4
10.4028/www.scientific.net/AMR.791-793.1901
10.1109/26.803503
10.1016/j.sna.2004.03.021
10.3141/2448-13
10.1061/(ASCE)1084-0702(2003)8:6(362)
10.1364/AO.52.003770
10.1088/0957-0233/14/5/201
10.1109/JLT.2011.2170813
10.1155/2016/9137531
10.1016/j.measurement.2015.10.002
10.1177/1475921716665563
10.1007/s11340-012-9701-6
10.1109/50.156868
10.1016/j.engstruct.2013.07.005
10.1098/rsta.2006.1928
10.1364/AO.37.001735
10.1260/1369-4332.16.8.1401
10.1109/50.566687
10.1080/00423114.2015.1084427
10.3390/s16010099
10.1109/JLT.2005.849924
10.3390/s140407451
10.1109/THS.2010.5654931
10.1109/EISIC.2012.59
10.1007/s13320-014-0163-6
10.1109/JSEN.2013.2274008
10.1109/LPT.2006.881239
10.1080/23248378.2016.1184598
10.1177/0954409713509980
10.1016/j.enggeo.2004.05.006
10.1109/LPT.2019.2904420
10.1002/met.114
10.1109/JSEN.2013.2256599
10.1016/j.ymssp.2015.01.003
10.1109/LPT.2014.2346760
10.1299/jmtl.3.154
10.1109/TSMCC.2007.893278
10.2174/1874834101508010272
10.1016/j.measurement.2014.09.054
10.1016/j.trgeo.2017.10.002
10.1063/1.92872
10.1139/cgj-2013-0403
10.1016/j.ymssp.2013.06.030
10.1111/j.1747-1567.2012.00844.x
10.1088/0964-1726/22/7/075027
10.1016/j.trd.2008.12.004
10.3390/s17112511
10.3390/s17102368
10.1016/j.measurement.2012.01.034
10.1177/1475921705049764
10.3390/s120708601
10.1109/ICSensT.2013.6727647
10.1016/j.sbspro.2012.06.1152
10.1109/JSEN.2016.2574622
10.1080/713773406
10.2138/rmg.2014.78.14
10.1179/1743281212Y.0000000051
10.1007/s13320-012-0091-2
10.1109/I2MTC.2015.7151415
10.3390/s16050748
10.1364/AO.27.000547
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2020
DBID AAYXX
CITATION
7TB
7U5
8FD
FR3
L7M
DOI 10.1016/j.sna.2019.111728
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Solid State and Superconductivity Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2019_111728
S0924424719309483
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SEW
SSH
WUQ
7TB
7U5
8FD
EFKBS
FR3
L7M
ID FETCH-LOGICAL-c325t-fd3e8f757a3771cf890a207106d332a8655b0242394bd4ff678759771e5198bd3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Mon Jul 14 06:50:52 EDT 2025
Tue Jul 01 01:05:30 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Fri Feb 23 02:47:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Structural health monitoring
Train
Railway track
Fiber optic sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-fd3e8f757a3771cf890a207106d332a8655b0242394bd4ff678759771e5198bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2436433345
PQPubID 2045401
ParticipantIDs proquest_journals_2436433345
crossref_citationtrail_10_1016_j_sna_2019_111728
crossref_primary_10_1016_j_sna_2019_111728
elsevier_sciencedirect_doi_10_1016_j_sna_2019_111728
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Section, Balliet (bib0050) 1922
Bommer, Rodrı́guez (bib0575) 2002; 63
Murray, Take, Hoult (bib0110) 2014; 52
Ferdinand (bib0400) 2014
Yucel, Ozturk (bib0625) 2017
Du, Owusu Twumasi, Tang, Guo, Zhou, Yu (bib0175) 2018; 18
Roths, Wilfert, Kratzer, Jülich, Kuttler (bib0345) 2010
Zhang, Wang, Wang, Yu, Xu, Zhang (bib0320) 2013
Hussaini, Indraratna, Vinod (bib0615) 2015
Bocciolone, Bucca, Collina, Comolli (bib0555) 2013; 41
Guo, Zhou, Du, Wang (bib0360) 2019
Krehlik (bib0530) 2014
Islam, Ali, Lai, Lim, Ahmad (bib0465) 2014; 14
Barke, Chiu (bib0120) 2005; 4
Tam, Liu, Guan, Chung, Chan, Cheng (bib0395) 2005
Eickhoff, Ulrich (bib0270) 1981; 39
Horiguchi, Kurashima, Tateda (bib0275) 1989; 1
Zhang, Liu, Jing, Li (bib0610) 2017
Zou, Chao, Wu, Tian, Yu, Wang (bib0300) 2013
Catalano, Bruno, Galliano, Pisco, Persiano, Cutolo (bib0680) 2017; 253
Loupos, Amditis (bib0380) 2017
Li, Wang, Tao (bib0405) 2015; 8
Wu, Zou, Zhou, Wang (bib0365) 2016; 79
Tosi (bib0215) 2017; 17
Marino, Distante, Mazzeo, Stella (bib0135) 2007; 37
Mishra, Tutumluer, Boler, Hyslip, Sussmann (bib0125) 2014
Tam, Lee, Ho, Haber, Graver, Méndez (bib0060) 2007; 2
Wagner, Maicz, Viel, Saliger, Saliger, Horak (bib0560) 2014
Zhang, Lu, Wang, Liang, Zhang (bib0220) 2011; 1
Yoon, Song, Choi, Na, Kim (bib0675) 2016; 2016
Guo, Wu, Luo, Chen, Wang (bib0370) 2016
Thakkar, Steel, Reuben (bib0085) 2010; 24
Yeager, Todd, Gregory, Key (bib0375) 2017; 16
Dou, Lindsey, Wagner, Daley, Freifeld, Robertson (bib0255) 2017; 7
Bandula-Heva, Dhanasekar, Boyd (bib0105) 2013; 53
Bernini, Minardo, Zeni (bib0170) 2005; 123
Kepak, Cubik, Zavodny, Siska, Davidson, Glesk (bib0520) 2016; 48
Ye, Ni, Yin (bib0655) 2013; 16
Huntley, Bobrowsky, Qing, Sladen, Bunce, Edwards (bib0720) 2014
Horiguchi, Kurashima, Tateda, Ishihara, Wakui (bib0245) 1992; 10
Ngamkhanong, Kaewunruen, Costa (bib0150) 2018
Lai, Au, Liu, Ho, Tam (bib0620) 2016; 16
Zhang, Kassam (bib0690) 1999; 47
Chen, Vidakovic, Fabian, Swift, Brun, Sun (bib0565) 2017
Tateda, Horiguchi, Kurashima, Ishihara (bib0280) 1990; 8
Ping, Kaize, Liyang, Lianshan, Jingmang, Rong (bib0580) 2016; 25
Tseng, Chen (bib0305) 1988; 27
Le Pen, Watson, Powrie, Yeo, Weston, Roberts (bib0115) 2014; 1
Liang, Sheng, Lou, Feng, Zhang (bib0470) 2016; 8
Sogabe, Asanuma, Nakamura, Kataoka, Goto, Tokunaga (bib0010) 2013; 54
Zhang, Feng, Zou, Wang, Shen (bib0095) 2015
Garcus, Gogolla, Krebber, Schliep (bib0165) 1997; 15
Shi, Xu, Chen, Zhang, Ding, Cui (bib0390) 2003; 21
Oslakovic, ter Maat, Hartmann, Dewulf (bib0015) 2012; 48
Chu (bib0070) 2007
Hill, Meltz (bib0195) 1997; 15
Arsenault, Achuthan, Marzocca, Grappasonni, Coppotelli (bib0350) 2013; 22
Kang, Kim, Jang (bib0605) 2014; 38
Scott, Banerji, Chikermane, Srinivasan, Basheer, Surre (bib0650) 2013; 13
Bird, Bommer (bib0570) 2004; 75
Wei, Zhang, Zhang, Xi, Li, Liu (bib0660) 2013; 791-793
Kostryzhev, Davis, Roberts (bib0090) 2013; 40
Barrias, Casas, Villalba (bib0160) 2016; 16
da CUNHA, Alcantara, Santa Brígida, Borges, Costa (bib0210) 2013; 3
Hyvärinen, Oja (bib0695) 1998; 64
Dutta, Murthy, Kim, Samui (bib0040) 2017; 53
Barrias, Casas, Villalba (bib0340) 2018; 18
Peng, Duan, Rao, Li (bib0505) 2014; 26
Jasenek (bib0425) 2001; 52
Hecht (bib0155) 2010
Stephen, Ralph (bib0200) 2003; 14
Klug, Lackner, Lienhart (bib0595) 2019
Filograno, Rodriguez-Barrios, Corredera, Martin-Lopez, Rodriguez-Plaza, Andres-Alguacil (bib0480) 2010
Wang, Lu, Zheng, Ye, Pan, Cai (bib0640) 2017
Mori, Tsunashima, Kojima, Matsumoto, Mizuma (bib0065) 2010; 3
Kreger, Rahim, Garg, Klute, Metrey, Beaty (bib0265) 2016
Jacques, Li‐Yang, Christophe (bib0205) 2013; 7
Li, Pang, Lu, Liu (bib0665) 2014; 4
Zou, Long, Chen (bib0450) 2015
Zhang, Yu, Song (bib0315) 2004; 116
Dutta, Barik (bib0145) 2017
Krohn (bib0225) 2000
Laarossi, Quintela-Incera, López-Higuera (bib0460) 2019; 19
Pinto, Ribeiro, Gabriel, Calçada (bib0645) 2015; 229
Nan, Xiaotian, Ye, John, Michael, Christopher (bib0290) 2012; 23
Wheeler, Pannese, Hoult, Take, Le (bib0600) 2018; 14
Duckworth, Ku (bib0700) 2013
Udd (bib0335) 1993
Allotta, D’Adamio, Meli, Pugi (bib0490) 2015; 53
Wenzel (bib0030) 2008
Farrar, Worden (bib0045) 2007; 365
Feng, Zhang, Zou, Wang, Yi (bib0100) 2015
Filograno, Corredera, Lerma, Esteban, González-Herráez (bib0550) 2010
Timofeev, Egorov, Denisov (bib0510) 2015; 9
Yuksel, Wuilpart, Moeyaert, Mégret (bib0430) 2009
Zhang, Koh, Kuang (bib0540) 2018
Miah, Potter (bib0410) 2017; 17
Kouroussis, Kinet, Moeyaert, Dupuy, Caucheteur (bib0500) 2016; 4
Owen, Duckworth, Worsley (bib0705) 2012
Minardo, Porcaro, Giannetta, Bernini, Zeni (bib0585) 2013; 52
Park, Bolognini, Lee, Kim, Cho, Di Pasquale (bib0455) 2006; 18
Mi, Gao, Zhu, Wang, Zhao (bib0485) 2014
Bao, Chen, Meng, Tang, Chen (bib0590) 2015
Speziale, Marquardt, Duffy (bib0440) 2014; 78
Li, Xia, Xie, Liu (bib0325) 2012; 20
Ramakrishnan, Rajan, Semenova, Farrell (bib0180) 2016; 16
Uchida, Levenberg, Klar (bib0285) 2015; 60
Mateeva, Lopez, Potters, Mestayer, Cox, Kiyashchenko (bib0260) 2014; 62
Mitchell (bib0310) 1991
Koetse, Rietveld (bib0020) 2009; 14
Singh, Swarup, Agarwal, Singh (bib0130) 2017
Minardo, Picarelli, Zeni, Catalano, Coscetta, Zhang (bib0715) 2017
Juarez, Maier, Choi, Taylor (bib0710) 2005; 23
Zou, Chao, Tian, Wu, Zhang, Yu (bib0295) 2012; 45
Casas, Cruz (bib0385) 2003; 8
Glisic (bib0355) 2013; 292
Thompson (bib0525) 2008
Filograno, Corredera, Rodríguez-Plaza, Andrés-Alguacil, González-Herráez (bib0535) 2013; 13
Dobney, Baker, Quinn, Chapman (bib0005) 2009; 16
Dutta, Samui, Kim (bib0035) 2018; 21
Peltier, Barkan, Downing, Socie (bib0055) 2007
Hill (bib0250) 2015
Du, Twumasi, Tang, Wu, Yu, Wang (bib0330) 2018
Rodriguez, Casas, Villalba (bib0415) 2015; 2
Dibazar, Yousefi, Park, Lu, George, Berger (bib0685) 2010
Fomitchov, Krishnaswamy (bib0190) 2003
Froggatt, Moore (bib0420) 1998; 37
Chapeleau, Sedran, Cottineau, Cailliau, Taillade, Gueguen (bib0630) 2013; 56
Culverhouse, Farahi, Pannell, Jackson (bib0240) 1989; 25
Yu, Shan, Yuan, Li (bib0670) 2018; 2018
Galindez-Jamioy, Lopez-Higuera (bib0445) 2012; 2012
Jenkins, Buggy, Morison (bib0140) 2019
Timofeev (bib0515) 2015; 9
Leung, Wan, Inaudi, Bao, Habel, Zhou (bib0185) 2015; 48
Roveri, Carcaterra, Sestieri (bib0545) 2015; 60-61
Li (bib0230) 2017
Bao, Chen (bib0235) 2012; 12
Dong, Chen, Bao (bib0435) 2012; 30
Leviäkangas, Tuominen, Molarius, Schabel, Toivonen, Keränen (bib0025) 2011
García, Corres, Goicoechea (bib0475) 2010; 2010
Kinet, Kouroussis, Dupuy, Moeyaert, Verlinden, Caucheteur (bib0495) 2016
Buggy, James, Staines, Carroll, Kitson, Farrington (bib0635) 2016; 27
Cañete, Chen, Díaz, Llopis, Rubio (bib0075) 2015; 15
Yilmazer (bib0080) 2013
Kreger (10.1016/j.sna.2019.111728_bib0265) 2016
Zhang (10.1016/j.sna.2019.111728_bib0095) 2015
Culverhouse (10.1016/j.sna.2019.111728_bib0240) 1989; 25
Sogabe (10.1016/j.sna.2019.111728_bib0010) 2013; 54
Uchida (10.1016/j.sna.2019.111728_bib0285) 2015; 60
Dong (10.1016/j.sna.2019.111728_bib0435) 2012; 30
Kang (10.1016/j.sna.2019.111728_bib0605) 2014; 38
Bandula-Heva (10.1016/j.sna.2019.111728_bib0105) 2013; 53
Wenzel (10.1016/j.sna.2019.111728_bib0030) 2008
Zhang (10.1016/j.sna.2019.111728_bib0540) 2018
Wagner (10.1016/j.sna.2019.111728_bib0560) 2014
Koetse (10.1016/j.sna.2019.111728_bib0020) 2009; 14
Tateda (10.1016/j.sna.2019.111728_bib0280) 1990; 8
Fomitchov (10.1016/j.sna.2019.111728_bib0190) 2003
Zou (10.1016/j.sna.2019.111728_bib0300) 2013
Timofeev (10.1016/j.sna.2019.111728_bib0510) 2015; 9
Mitchell (10.1016/j.sna.2019.111728_bib0310) 1991
Eickhoff (10.1016/j.sna.2019.111728_bib0270) 1981; 39
Chu (10.1016/j.sna.2019.111728_bib0070) 2007
Loupos (10.1016/j.sna.2019.111728_bib0380) 2017
Li (10.1016/j.sna.2019.111728_bib0405) 2015; 8
García (10.1016/j.sna.2019.111728_bib0475) 2010; 2010
Allotta (10.1016/j.sna.2019.111728_bib0490) 2015; 53
Bernini (10.1016/j.sna.2019.111728_bib0170) 2005; 123
Hill (10.1016/j.sna.2019.111728_bib0250) 2015
Udd (10.1016/j.sna.2019.111728_bib0335) 1993
Shi (10.1016/j.sna.2019.111728_bib0390) 2003; 21
Singh (10.1016/j.sna.2019.111728_bib0130) 2017
Ping (10.1016/j.sna.2019.111728_bib0580) 2016; 25
Miah (10.1016/j.sna.2019.111728_bib0410) 2017; 17
Yoon (10.1016/j.sna.2019.111728_bib0675) 2016; 2016
Section (10.1016/j.sna.2019.111728_bib0050) 1922
Guo (10.1016/j.sna.2019.111728_bib0370) 2016
Peltier (10.1016/j.sna.2019.111728_bib0055) 2007
Roveri (10.1016/j.sna.2019.111728_bib0545) 2015; 60-61
Filograno (10.1016/j.sna.2019.111728_bib0535) 2013; 13
Jasenek (10.1016/j.sna.2019.111728_bib0425) 2001; 52
Dutta (10.1016/j.sna.2019.111728_bib0145) 2017
Dutta (10.1016/j.sna.2019.111728_bib0040) 2017; 53
Wang (10.1016/j.sna.2019.111728_bib0640) 2017
Dibazar (10.1016/j.sna.2019.111728_bib0685) 2010
Chen (10.1016/j.sna.2019.111728_bib0565) 2017
Duckworth (10.1016/j.sna.2019.111728_bib0700) 2013
Li (10.1016/j.sna.2019.111728_bib0665) 2014; 4
Klug (10.1016/j.sna.2019.111728_bib0595) 2019
Huntley (10.1016/j.sna.2019.111728_bib0720) 2014
Owen (10.1016/j.sna.2019.111728_bib0705) 2012
Oslakovic (10.1016/j.sna.2019.111728_bib0015) 2012; 48
Dutta (10.1016/j.sna.2019.111728_bib0035) 2018; 21
Marino (10.1016/j.sna.2019.111728_bib0135) 2007; 37
Mori (10.1016/j.sna.2019.111728_bib0065) 2010; 3
Garcus (10.1016/j.sna.2019.111728_bib0165) 1997; 15
Zhang (10.1016/j.sna.2019.111728_bib0610) 2017
Zou (10.1016/j.sna.2019.111728_bib0450) 2015
Krohn (10.1016/j.sna.2019.111728_bib0225) 2000
Glisic (10.1016/j.sna.2019.111728_bib0355) 2013; 292
Thakkar (10.1016/j.sna.2019.111728_bib0085) 2010; 24
Tosi (10.1016/j.sna.2019.111728_bib0215) 2017; 17
Feng (10.1016/j.sna.2019.111728_bib0100) 2015
Ngamkhanong (10.1016/j.sna.2019.111728_bib0150) 2018
Galindez-Jamioy (10.1016/j.sna.2019.111728_bib0445) 2012; 2012
Hecht (10.1016/j.sna.2019.111728_bib0155) 2010
Minardo (10.1016/j.sna.2019.111728_bib0715) 2017
Liang (10.1016/j.sna.2019.111728_bib0470) 2016; 8
Li (10.1016/j.sna.2019.111728_bib0230) 2017
Horiguchi (10.1016/j.sna.2019.111728_bib0245) 1992; 10
Dobney (10.1016/j.sna.2019.111728_bib0005) 2009; 16
Barrias (10.1016/j.sna.2019.111728_bib0160) 2016; 16
Kostryzhev (10.1016/j.sna.2019.111728_bib0090) 2013; 40
Guo (10.1016/j.sna.2019.111728_bib0360) 2019
Bird (10.1016/j.sna.2019.111728_bib0570) 2004; 75
Filograno (10.1016/j.sna.2019.111728_bib0550) 2010
Barrias (10.1016/j.sna.2019.111728_bib0340) 2018; 18
Bocciolone (10.1016/j.sna.2019.111728_bib0555) 2013; 41
Chapeleau (10.1016/j.sna.2019.111728_bib0630) 2013; 56
Wheeler (10.1016/j.sna.2019.111728_bib0600) 2018; 14
Wu (10.1016/j.sna.2019.111728_bib0365) 2016; 79
da CUNHA (10.1016/j.sna.2019.111728_bib0210) 2013; 3
Pinto (10.1016/j.sna.2019.111728_bib0645) 2015; 229
Krehlik (10.1016/j.sna.2019.111728_bib0530) 2014
Tam (10.1016/j.sna.2019.111728_bib0060) 2007; 2
Buggy (10.1016/j.sna.2019.111728_bib0635) 2016; 27
Peng (10.1016/j.sna.2019.111728_bib0505) 2014; 26
Ferdinand (10.1016/j.sna.2019.111728_bib0400) 2014
Mi (10.1016/j.sna.2019.111728_bib0485) 2014
Jacques (10.1016/j.sna.2019.111728_bib0205) 2013; 7
Kouroussis (10.1016/j.sna.2019.111728_bib0500) 2016; 4
Filograno (10.1016/j.sna.2019.111728_bib0480) 2010
Juarez (10.1016/j.sna.2019.111728_bib0710) 2005; 23
Scott (10.1016/j.sna.2019.111728_bib0650) 2013; 13
Zhang (10.1016/j.sna.2019.111728_bib0320) 2013
Farrar (10.1016/j.sna.2019.111728_bib0045) 2007; 365
Dou (10.1016/j.sna.2019.111728_bib0255) 2017; 7
Bao (10.1016/j.sna.2019.111728_bib0235) 2012; 12
Bao (10.1016/j.sna.2019.111728_bib0590) 2015
Cañete (10.1016/j.sna.2019.111728_bib0075) 2015; 15
Roths (10.1016/j.sna.2019.111728_bib0345) 2010
Barke (10.1016/j.sna.2019.111728_bib0120) 2005; 4
Yeager (10.1016/j.sna.2019.111728_bib0375) 2017; 16
Arsenault (10.1016/j.sna.2019.111728_bib0350) 2013; 22
Jenkins (10.1016/j.sna.2019.111728_bib0140) 2019
Bommer (10.1016/j.sna.2019.111728_bib0575) 2002; 63
Kepak (10.1016/j.sna.2019.111728_bib0520) 2016; 48
Yu (10.1016/j.sna.2019.111728_bib0670) 2018; 2018
Hussaini (10.1016/j.sna.2019.111728_bib0615) 2015
Li (10.1016/j.sna.2019.111728_bib0325) 2012; 20
Hyvärinen (10.1016/j.sna.2019.111728_bib0695) 1998; 64
Casas (10.1016/j.sna.2019.111728_bib0385) 2003; 8
Islam (10.1016/j.sna.2019.111728_bib0465) 2014; 14
Zhang (10.1016/j.sna.2019.111728_bib0690) 1999; 47
Catalano (10.1016/j.sna.2019.111728_bib0680) 2017; 253
Yilmazer (10.1016/j.sna.2019.111728_bib0080) 2013
Yucel (10.1016/j.sna.2019.111728_bib0625) 2017
Zou (10.1016/j.sna.2019.111728_bib0295) 2012; 45
Leviäkangas (10.1016/j.sna.2019.111728_bib0025) 2011
Froggatt (10.1016/j.sna.2019.111728_bib0420) 1998; 37
Zhang (10.1016/j.sna.2019.111728_bib0220) 2011; 1
Wei (10.1016/j.sna.2019.111728_bib0660) 2013; 791-793
Park (10.1016/j.sna.2019.111728_bib0455) 2006; 18
Nan (10.1016/j.sna.2019.111728_bib0290) 2012; 23
Yuksel (10.1016/j.sna.2019.111728_bib0430) 2009
Hill (10.1016/j.sna.2019.111728_bib0195) 1997; 15
Zhang (10.1016/j.sna.2019.111728_bib0315) 2004; 116
Kinet (10.1016/j.sna.2019.111728_bib0495) 2016
Timofeev (10.1016/j.sna.2019.111728_bib0515) 2015; 9
Mishra (10.1016/j.sna.2019.111728_bib0125) 2014
Ramakrishnan (10.1016/j.sna.2019.111728_bib0180) 2016; 16
Laarossi (10.1016/j.sna.2019.111728_bib0460) 2019; 19
Stephen (10.1016/j.sna.2019.111728_bib0200) 2003; 14
Speziale (10.1016/j.sna.2019.111728_bib0440) 2014; 78
Rodriguez (10.1016/j.sna.2019.111728_bib0415) 2015; 2
Tseng (10.1016/j.sna.2019.111728_bib0305) 1988; 27
Lai (10.1016/j.sna.2019.111728_bib0620) 2016; 16
Minardo (10.1016/j.sna.2019.111728_bib0585) 2013; 52
Thompson (10.1016/j.sna.2019.111728_bib0525) 2008
Ye (10.1016/j.sna.2019.111728_bib0655) 2013; 16
Mateeva (10.1016/j.sna.2019.111728_bib0260) 2014; 62
Horiguchi (10.1016/j.sna.2019.111728_bib0275) 1989; 1
Tam (10.1016/j.sna.2019.111728_bib0395) 2005
Leung (10.1016/j.sna.2019.111728_bib0185) 2015; 48
Murray (10.1016/j.sna.2019.111728_bib0110) 2014; 52
Le Pen (10.1016/j.sna.2019.111728_bib0115) 2014; 1
Du (10.1016/j.sna.2019.111728_bib0175) 2018; 18
Du (10.1016/j.sna.2019.111728_bib0330) 2018
References_xml – start-page: 1046
  year: 2015
  end-page: 1051
  ident: bib0095
  article-title: An investigation on rail health monitoring using acoustic emission technique by tensile test
  publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE
– year: 2015
  ident: bib0450
  article-title: Brillouin scattering in optical fibers and its application to distributed sensors
  publication-title: Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications
– year: 2016
  ident: bib0265
  article-title: Optical frequency domain reflectometry: principles and applications in fiber optic sensing, Fiber optic Sensors and Applications XIII
  publication-title: Int. Soc. Opt. Photon.
– start-page: 226
  year: 2013
  end-page: 229
  ident: bib0320
  article-title: Mach-Zehnder interferometer as a temperature sensor based on the nested fiber ring resonator
  publication-title: 2013 Seventh International Conference on Sensing Technology (ICST), IEEE
– volume: 2012
  year: 2012
  ident: bib0445
  article-title: Brillouin distributed fiber sensors: an overview and applications
  publication-title: J. Sens.
– volume: 23
  year: 2012
  ident: bib0290
  article-title: An ultra-fast fiber optic pressure sensor for blast event measurements
  publication-title: Meas. Sci. Technol.
– volume: 116
  start-page: 33
  year: 2004
  end-page: 38
  ident: bib0315
  article-title: An investigation of interference/intensity demodulated fiber-optic Fabry–Perot cavity sensor
  publication-title: Sens. Actuators A Phys.
– start-page: 415
  year: 2014
  end-page: 421
  ident: bib0720
  article-title: Fiber Optic Strain Monitoring and Evaluation of a Slow-moving Landslide Near Ashcroft, British Columbia, canada, Landslide Science for a Safer Geoenvironment
– start-page: 139
  year: 1991
  end-page: 156
  ident: bib0310
  article-title: Intensity-based and Fabry-perot Interferometer Sensors, Fiber optic Sensors: an Introduction for Engineers and Scientists
– volume: 60
  start-page: 104
  year: 2015
  end-page: 113
  ident: bib0285
  article-title: On-specimen strain measurement with fiber optic distributed sensing
  publication-title: Measurement
– volume: 229
  start-page: 280
  year: 2015
  end-page: 290
  ident: bib0645
  article-title: Dynamic monitoring of railway track displacement using an optical system
  publication-title: Arch. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 1989-1996
– volume: 24
  start-page: 256
  year: 2010
  end-page: 266
  ident: bib0085
  article-title: Rail–wheel interaction monitoring using Acoustic Emission: a laboratory study of normal rolling signals with natural rail defects
  publication-title: Mech. Syst. Signal Process.
– volume: 23
  start-page: 2081
  year: 2005
  end-page: 2087
  ident: bib0710
  article-title: Distributed fiber-optic intrusion sensor system
  publication-title: J. Light. Technol.
– volume: 4
  start-page: 81
  year: 2005
  end-page: 93
  ident: bib0120
  article-title: Structural health monitoring in the railway industry: a review
  publication-title: Struct. Health Monit.
– volume: 3
  start-page: 154
  year: 2010
  end-page: 165
  ident: bib0065
  article-title: Condition monitoring of railway track using in-service vehicle
  publication-title: J. Mech. Syst. Transp. Logist.
– year: 2016
  ident: bib0495
  article-title: Cost-effective FBG Interrogation Combined With Cepstral-based Signal Processing for Railway Traffic Monitoring, SPIE Photonics Europe
– year: 2014
  ident: bib0400
  article-title: The evolution of optical fiber sensors technologies during the 35 last years and their applications in structure health monitoring
  publication-title: EWSHM-7th European Workshop on Structural Health Monitoring
– year: 1922
  ident: bib0050
  article-title: The Invention of the Track Circuit: the History of Dr. William Robinson’s Invention of the Track Circuit, the Fundamental Unit Which Made Possible Our Present Automatic Block Signaling and Interlocking Systems: Signal Section, American Railway Association
– volume: 52
  start-page: 141
  year: 2014
  end-page: 155
  ident: bib0110
  article-title: Measurement of vertical and longitudinal rail displacements using digital image correlation
  publication-title: Can. Geotech. J.
– volume: 25
  start-page: 913
  year: 1989
  end-page: 915
  ident: bib0240
  article-title: Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors
  publication-title: Electron. Lett.
– volume: 48
  start-page: 871
  year: 2015
  end-page: 906
  ident: bib0185
  article-title: Review: optical fiber sensors for civil engineering applications
  publication-title: Mater. Struct.
– volume: 15
  start-page: 4996
  year: 2015
  end-page: 5019
  ident: bib0075
  article-title: Sensor4PRI: A sensor platform for the protection of railway infrastructures
  publication-title: Sensors
– volume: 14
  start-page: 7451
  year: 2014
  end-page: 7488
  ident: bib0465
  article-title: Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review
  publication-title: Sensors
– volume: 48
  start-page: 1775
  year: 2012
  end-page: 1784
  ident: bib0015
  article-title: Climate change and infrastructure performance: should we worry about?
  publication-title: Procedia-Soc. Behav. Sci.
– volume: 16
  start-page: 99
  year: 2016
  ident: bib0180
  article-title: Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials
  publication-title: Sensors
– start-page: 76530F
  year: 2010
  ident: bib0345
  article-title: Strain calibration of optical FBG-based strain sensors, fourth european workshop on optical fibre sensors
  publication-title: Int. Soc. Opt. Photon.
– volume: 53
  start-page: 1850
  year: 2015
  end-page: 1875
  ident: bib0490
  article-title: Development of a new time domain-based algorithm for train detection and axle counting
  publication-title: Veh. Syst. Dyn.
– volume: 60-61
  start-page: 14
  year: 2015
  end-page: 28
  ident: bib0545
  article-title: Real-time monitoring of railway infrastructures using fibre Bragg grating sensors
  publication-title: Mech. Syst. Signal Process.
– year: 1993
  ident: bib0335
  article-title: Fiber Optic Smart Structures, Fibers’ 92
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib0640
  article-title: Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR
  publication-title: 2017 25th Optical Fiber Sensors Conference (OFS)
– year: 2015
  ident: bib0615
  article-title: Application of Optical-Fiber Bragg Grating Sensors in Monitoring the Rail Track Deformations
– year: 2013
  ident: bib0080
  article-title: Structural Health Condition Monitoring of Rails Using Acoustic Emission Techniques
– volume: 37
  start-page: 418
  year: 2007
  end-page: 428
  ident: bib0135
  article-title: A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
– volume: 62
  start-page: 679
  year: 2014
  end-page: 692
  ident: bib0260
  article-title: Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling
  publication-title: Geophys. Prospect.
– volume: 20
  start-page: 11109
  year: 2012
  end-page: 11120
  ident: bib0325
  article-title: All-fiber Mach-Zehnder interferometers for sensing applications
  publication-title: Opt. Express
– start-page: 76533M
  year: 2010
  ident: bib0480
  article-title: Real-time monitoring of railway traffic using fiber bragg gratings, fourth European Workshop on optical fibre sensors
  publication-title: Int. Soc. Opt. Photon.
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib0565
  article-title: A temperature compensated fibre Bragg grating (FBG)-based sensor system for condition monitoring of electrified railway pantograph
  publication-title: 2017 25th Optical Fiber Sensors Conference (OFS)
– volume: 253
  start-page: 91
  year: 2017
  end-page: 100
  ident: bib0680
  article-title: An optical fiber intrusion detection system for railway security
  publication-title: Sens. Actuators A Phys.
– volume: 18
  start-page: 1353
  year: 2018
  ident: bib0175
  article-title: All-optical photoacoustic sensors for steel rebar corrosion monitoring
  publication-title: Sensors
– year: 2014
  ident: bib0560
  article-title: A fibre optic sensor instrumented pantograph as part of a continuous structural health monitoring system for railway overhead lines
  publication-title: EWSHM - 7th European Workshop on Structural Health Monitoring
– volume: 79
  start-page: 164
  year: 2016
  end-page: 171
  ident: bib0365
  article-title: Fiber optic ultrasound transmitters and their applications
  publication-title: Measurement
– volume: 8
  start-page: 362
  year: 2003
  end-page: 373
  ident: bib0385
  article-title: Fiber optic sensors for bridge monitoring
  publication-title: J. Bridge Eng.
– volume: 54
  start-page: 104
  year: 2013
  end-page: 111
  ident: bib0010
  article-title: Deformation behavior of ballasted track during earthquakes
  publication-title: Quart. Report RTRI
– volume: 2018
  start-page: 14
  year: 2018
  ident: bib0670
  article-title: Performance deterioration of heavy-haul railway bridges under fatigue loading monitored by a multisensor system
  publication-title: J. Sens.
– volume: 7
  start-page: 83
  year: 2013
  end-page: 108
  ident: bib0205
  article-title: Tilted fiber Bragg grating sensors
  publication-title: Laser Photon. Rev.
– volume: 17
  start-page: 2511
  year: 2017
  ident: bib0410
  article-title: A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications
  publication-title: Sensors
– start-page: 362
  year: 2012
  end-page: 364
  ident: bib0705
  article-title: OptaSense: fibre optic distributed acoustic sensing for border monitoring
  publication-title: 2012 European Intelligence and Security Informatics Conference, IEEE
– volume: 7
  start-page: 11620
  year: 2017
  ident: bib0255
  article-title: Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study
  publication-title: Sci. Rep.
– volume: 21
  start-page: 333
  year: 2003
  end-page: 343
  ident: bib0390
  article-title: A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan Strait Tunnel Project
  publication-title: Mar. Georesources Geotechnol.
– volume: 16
  start-page: 262
  year: 2017
  end-page: 275
  ident: bib0375
  article-title: Assessment of embedded fiber Bragg gratings for structural health monitoring of composites
  publication-title: Struct. Health Monit.
– volume: 30
  start-page: 1161
  year: 2012
  end-page: 1167
  ident: bib0435
  article-title: Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs
  publication-title: J. Light. Technol.
– volume: 52
  start-page: 3770
  year: 2013
  end-page: 3776
  ident: bib0585
  article-title: Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors
  publication-title: Appl. Opt.
– year: 2015
  ident: bib0250
  article-title: Distributed Acoustic Sensing (DAS): Theory and Applications, Frontiers in Optics 2015
– volume: 791-793
  start-page: 1901
  year: 2013
  end-page: 1904
  ident: bib0660
  article-title: Research on evaluation method of the bridge strengthening effect based on Fiber optic sensor
  publication-title: Adv. Mater. Res.
– volume: 13
  start-page: 4808
  year: 2013
  end-page: 4816
  ident: bib0535
  article-title: Wheel flat detection in high-speed railway systems using Fiber bragg gratings
  publication-title: IEEE Sens. J.
– year: 2019
  ident: bib0140
  article-title: An Imaging System for Visual Inspection and Structural Condition Monitoring of Railway Tunnels
– volume: 27
  start-page: 547
  year: 1988
  end-page: 551
  ident: bib0305
  article-title: Optical fiber fabry-perot sensors
  publication-title: Appl. Opt.
– volume: 16
  start-page: 245
  year: 2009
  end-page: 251
  ident: bib0005
  article-title: Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south‐east United Kingdom
  publication-title: Meteorol. Appl.
– volume: 19
  start-page: 574
  year: 2019
  ident: bib0460
  article-title: Comparative experimental study of a high-temperature raman-based distributed optical fiber sensor with different special fibers
  publication-title: Sensors
– volume: 27
  year: 2016
  ident: bib0635
  article-title: Railway track component condition monitoring using optical fibre Bragg grating sensors
  publication-title: Meas. Sci. Technol.
– start-page: 87110G
  year: 2013
  ident: bib0700
  article-title: OptaSense distributed acoustic and seismic sensing using COTS fiber optic cables for infrastructure protection and counter terrorism, Sensors, and command, control, communications, and intelligence (c3i) Technologies for homeland security and homeland defense XII
  publication-title: Int. Soc. Opt. Photon.
– volume: 10
  start-page: 1196
  year: 1992
  end-page: 1201
  ident: bib0245
  article-title: Brillouin characterization of fiber strain in bent slot-type optical-fiber cables
  publication-title: J. Light. Technol.
– volume: 16
  start-page: 6346
  year: 2016
  end-page: 6350
  ident: bib0620
  article-title: Development of level sensors based on Fiber bragg grating for railway track differential settlement measurement
  publication-title: IEEE Sens. J.
– volume: 13
  start-page: 2555
  year: 2013
  end-page: 2562
  ident: bib0650
  article-title: Commissioning and evaluation of a fiber-optic sensor system for bridge monitoring
  publication-title: IEEE Sens. J.
– year: 2019
  ident: bib0595
  article-title: Monitoring of Railway Deformations Using Distributed Fiber optic Sensors
– volume: 37
  start-page: 1735
  year: 1998
  end-page: 1740
  ident: bib0420
  article-title: High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter
  publication-title: Appl. Opt.
– volume: 14
  start-page: 70
  year: 2018
  end-page: 80
  ident: bib0600
  article-title: Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: lab and field evaluation
  publication-title: Transp. Geotech.
– year: 2017
  ident: bib0230
  article-title: Rayleigh Scattering Based Distributed Optical Fiber Sensing, Applied Optics and Photonics China (AOPC2017)
– volume: 41
  start-page: 226
  year: 2013
  end-page: 238
  ident: bib0555
  article-title: Pantograph–catenary monitoring by means of fibre Bragg grating sensors: results from tests in an underground line
  publication-title: Mech. Syst. Signal Process.
– volume: 25
  year: 2016
  ident: bib0580
  article-title: Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors
  publication-title: Smart Mater. Struct.
– year: 2011
  ident: bib0025
  article-title: Extreme Weather Impacts on Transport Systems
– start-page: 3
  year: 2018
  ident: bib0150
  article-title: State-of-the-Art Review of Railway Track Resilience Monitoring, Infrastructures
– volume: 14
  start-page: R49
  year: 2003
  ident: bib0200
  article-title: Optical fibre long-period grating sensors: characteristics and application
  publication-title: Meas. Sci. Technol.
– volume: 39
  start-page: 693
  year: 1981
  end-page: 695
  ident: bib0270
  article-title: Optical frequency domain reflectometry in single‐mode fiber
  publication-title: Appl. Phys. Lett.
– start-page: 185
  year: 2017
  end-page: 206
  ident: bib0380
  article-title: Structural health monitoring fiber optic sensors
  publication-title: Fiber Optic Sensors: Current Status and Future Possibilities
– volume: 8
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0470
  article-title: Combination of phase-sensitive OTDR and michelson interferometer for nuisance alarm rate reducing and event identification
  publication-title: IEEE Photon. J.
– start-page: 699
  year: 2015
  end-page: 704
  ident: bib0100
  article-title: Rail health monitoring using acoustic emission technique based on NMF and RVM
  publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE
– start-page: 1
  year: 2009
  end-page: 5
  ident: bib0430
  article-title: Optical frequency domain reflectometry: a review
  publication-title: 2009 11th International Conference on Transparent Optical Networks, IEEE
– volume: 2
  start-page: 357
  year: 2015
  end-page: 382
  ident: bib0415
  article-title: SHM by DOFS in civil engineering: a review
  publication-title: Struct. Monit. Maint.
– year: 2017
  ident: bib0145
  article-title: Studies on geotechnical properties of subsoil in south east coastal region of India
  publication-title: IOP Conference Series: Materials Science and Engineering
– volume: 53
  start-page: 157
  year: 2017
  end-page: 174
  ident: bib0040
  article-title: Prediction of compressive strength of self-compacting concrete using intelligent computational modeling
  publication-title: CMC-Comput. Mater. Continua
– volume: 38
  start-page: 39
  year: 2014
  end-page: 47
  ident: bib0605
  article-title: Design and development of structural health monitoring system for smart railroad-gauge-facility using FBG sensors
  publication-title: Exp. Tech.
– volume: 64
  start-page: 301
  year: 1998
  end-page: 313
  ident: bib0695
  article-title: Independent component analysis by general nonlinear Hebbian-like learning rules
  publication-title: Signal Process.
– volume: 2
  start-page: 1824
  year: 2007
  end-page: 1831
  ident: bib0060
  article-title: Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications
  publication-title: Struct. Health Monit.
– volume: 12
  start-page: 8601
  year: 2012
  ident: bib0235
  article-title: Recent progress in distributed fiber optic sensors
  publication-title: Sensors
– year: 2015
  ident: bib0590
  article-title: Kilometer-Long Optical Fiber Sensor for Real-Time Railroad Infrastructure Monitoring to Ensure Safe Train Operation
– year: 2013
  ident: bib0300
  article-title: A Novel Fabry-perot Fiber Optic Temperature Sensor for Early Age Hydration Heat Study in Portland Cement Concrete
– volume: 52
  start-page: 187
  year: 2001
  end-page: 192
  ident: bib0425
  article-title: Capabilities and limitations of coherent optical frequency-domain reflectometry
  publication-title: J. Electr. Eng. Bratislava
– volume: 18
  start-page: 1879
  year: 2006
  end-page: 1881
  ident: bib0455
  article-title: Raman-based distributed temperature sensor with simplex coding and link optimization
  publication-title: IEEE Photo. Technol. Lett.
– year: 2000
  ident: bib0225
  article-title: Fiber Optic Sensors: Fundamentals and Applications
– volume: 22
  year: 2013
  ident: bib0350
  article-title: Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring
  publication-title: Smart Mater. Struct.
– volume: 292
  start-page: 1
  year: 2013
  end-page: 18
  ident: bib0355
  article-title: Distributed fiber optic sensing technologies and applications–an overview
  publication-title: ACI Spec. Publ.
– volume: 4
  start-page: 135
  year: 2016
  end-page: 150
  ident: bib0500
  article-title: Railway structure monitoring solutions using fibre Bragg grating sensors
  publication-title: Int. J. Rail Transp.
– volume: 18
  start-page: 980
  year: 2018
  ident: bib0340
  article-title: Embedded distributed optical fiber sensors in reinforced concrete structures—a case study
  publication-title: Sensors
– year: 2007
  ident: bib0055
  article-title: Using Strain Gauges to Detect Epoxy Debonding in Insulated Rail Joints
– volume: 1
  start-page: 201
  year: 2014
  end-page: 213
  ident: bib0115
  article-title: The behaviour of railway level crossings: insights through field monitoring
  publication-title: Transp. Geotech.
– year: 2007
  ident: bib0070
  article-title: Specialized Sensors for Railroad Applications
– start-page: 105
  year: 2014
  end-page: 114
  ident: bib0125
  article-title: Railroad track transitions with multidepth deflectometers and strain gauges
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
– volume: 16
  start-page: 748
  year: 2016
  ident: bib0160
  article-title: A review of distributed optical fiber sensors for civil engineering applications
  publication-title: Sensors
– volume: 1
  start-page: 54
  year: 2011
  end-page: 61
  ident: bib0220
  article-title: Development of fully-distributed fiber sensors based on Brillouin scattering
  publication-title: Photonic Sens.
– volume: 63
  start-page: 189
  year: 2002
  end-page: 220
  ident: bib0575
  article-title: Earthquake-induced landslides in Central America
  publication-title: Eng. Geol.
– volume: 48
  start-page: 354
  year: 2016
  ident: bib0520
  article-title: Fibre optic track vibration monitoring system
  publication-title: Opt. Quantum Electron.
– volume: 45
  start-page: 1077
  year: 2012
  end-page: 1082
  ident: bib0295
  article-title: An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors
  publication-title: Measurement
– volume: 26
  start-page: 2055
  year: 2014
  end-page: 2057
  ident: bib0505
  article-title: Real-time position and speed monitoring of trains using phase-sensitive OTDR
  publication-title: IEEE Photon.Technol. Lett.
– volume: 2010
  year: 2010
  ident: bib0475
  article-title: Vibration detection using optical fiber sensors
  publication-title: J. Sens.
– year: 2005
  ident: bib0395
  article-title: Fiber Bragg Grating Sensors for Structural and Railway Applications, Photonics Asia
– volume: 21
  start-page: 463
  year: 2018
  end-page: 470
  ident: bib0035
  article-title: Comparison of machine learning techniques to predict compressive strength of concrete
  publication-title: Comput. Concr.
– volume: 17
  start-page: 2368
  year: 2017
  ident: bib0215
  article-title: Review and Analysis of peak tracking techniques for fiber Bragg grating sensors
  publication-title: Sensors
– start-page: 1
  year: 2017
  end-page: 15
  ident: bib0625
  article-title: Real-time monitoring of railroad track tension using a fiber Bragg grating-based strain sensor
  publication-title: Instrum. Sci. Technol.
– start-page: 351
  year: 2010
  end-page: 356
  ident: bib0685
  article-title: Intelligent acoustic and vibration recognition/alert systems for security breaching detection, close proximity danger identification, and perimeter protection
  publication-title: 2010 IEEE International Conference on Technologies for Homeland Security (HST), IEEE
– year: 2008
  ident: bib0525
  article-title: Railway Noise and Vibration: Mechanisms, Modelling and Means of Control
– year: 2018
  ident: bib0330
  article-title: Real Time Corrosion Detection of Rebar Using Embeddable Fiber Optic Ultrasound Sensor, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring
– year: 2019
  ident: bib0360
  article-title: Highly sensitive miniature all-silica Fiber tip fabry-perot pressure sensor
  publication-title: IEEE Photon. Technol. Lett.
– volume: 75
  start-page: 147
  year: 2004
  end-page: 179
  ident: bib0570
  article-title: Earthquake losses due to ground failure
  publication-title: Eng. Geol.
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib0610
  article-title: Application of FBG sensing technique for monitoring and early warning system of high-speed railway track conditions
  publication-title: 2017 25th Optical Fiber Sensors Conference (OFS)
– volume: 9
  start-page: 1698
  year: 2015
  end-page: 1702
  ident: bib0510
  article-title: The rail traffic management with usage of C-OTDR monitoring systems
  publication-title: Int. J. Comput. Electr. Autom. Control Inf. Eng.
– volume: 53
  start-page: 943
  year: 2013
  end-page: 957
  ident: bib0105
  article-title: Experimental investigation of Wheel/Rail rolling contact at railhead edge
  publication-title: Exp. Mech.
– volume: 3
  start-page: 74
  year: 2013
  end-page: 80
  ident: bib0210
  article-title: New approach to the strain analysis of bragg grating sensors
  publication-title: Photonic Sens.
– year: 2018
  ident: bib0540
  article-title: Fibre Optic Rail Pad Sensor Based Wheel Flat Identification
– volume: 365
  start-page: 303
  year: 2007
  end-page: 315
  ident: bib0045
  article-title: An introduction to structural health monitoring
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
– year: 2017
  ident: bib0715
  article-title: Distributed fiber optic sensors for the monitoring of a tunnel crossing a landslide
  publication-title: EGU General Assembly Conference Abstracts
– year: 2017
  ident: bib0130
  article-title: Vision Based Rail Track Extraction and Monitoring Through Drone Imagery
– volume: 4
  start-page: 173
  year: 2014
  end-page: 179
  ident: bib0665
  article-title: Rail expansion devices monitored by FBG sensors on an urban railway viaduct
  publication-title: Photonic Sens.
– year: 2010
  ident: bib0155
  article-title: Short History of Laser Development
– volume: 15
  start-page: 654
  year: 1997
  end-page: 662
  ident: bib0165
  article-title: Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements
  publication-title: J. Light. Technol.
– volume: 16
  start-page: 1401
  year: 2013
  end-page: 1409
  ident: bib0655
  article-title: Safety monitoring of railway tunnel construction using FBG sensing technology
  publication-title: Adv. Struct. Eng.
– volume: 47
  start-page: 1688
  year: 1999
  end-page: 1692
  ident: bib0690
  article-title: Finite-state Markov model for Rayleigh fading channels
  publication-title: IEEE Trans. Commun.
– start-page: 259
  year: 2014
  end-page: 264
  ident: bib0485
  article-title: Composite railway health monitoring system based on fiber optic bragg grating sensing array
  publication-title: 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing
– volume: 40
  start-page: 98
  year: 2013
  end-page: 102
  ident: bib0090
  article-title: Detection of crack growth in rail steel using acoustic emission
  publication-title: Ironmak. Steelmak.
– start-page: 99
  year: 2016
  end-page: 102
  ident: bib0370
  article-title: Ultrasound generation from a side-polished optical fiber
  publication-title: 2016 International Symposium on Flexible Automation (ISFA)
– start-page: 339
  year: 2014
  end-page: 342
  ident: bib0530
  article-title: Measurement of acoustic noise in field-deployed fiber optic cables
  publication-title: 2014 European Frequency and Time Forum (EFTF), IEEE
– volume: 56
  start-page: 1751
  year: 2013
  end-page: 1757
  ident: bib0630
  article-title: Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory
  publication-title: Eng. Struct.
– year: 2008
  ident: bib0030
  article-title: Health Monitoring of Bridges
– volume: 2016
  start-page: 10
  year: 2016
  ident: bib0675
  article-title: Real-time distributed strain monitoring of a Railway Bridge during train passage by using a distributed optical Fiber sensor based on brillouin optical correlation domain analysis
  publication-title: J. Sens.
– volume: 1
  start-page: 107
  year: 1989
  end-page: 108
  ident: bib0275
  article-title: Tensile strain dependence of Brillouin frequency shift in silica optical fibers
  publication-title: IEEE Photonics Technol. Lett.
– volume: 8
  year: 2015
  ident: bib0405
  article-title: Current and future applications of distributed acoustic sensing as a new reservoir geophysics tool
  publication-title: Open Pet. Eng. J.
– volume: 15
  start-page: 1263
  year: 1997
  end-page: 1276
  ident: bib0195
  article-title: Fiber Bragg grating technology fundamentals and overview
  publication-title: J. Light. Technol.
– year: 2003
  ident: bib0190
  article-title: Response of a Fiber Bragg Grating Ultrasonic Sensor
– volume: 123
  start-page: 337
  year: 2005
  end-page: 342
  ident: bib0170
  article-title: Distributed fiber-optic frequency-domain Brillouin sensing
  publication-title: Sens. Actuators A Phys.
– volume: 8
  start-page: 1269
  year: 1990
  end-page: 1272
  ident: bib0280
  article-title: First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy
  publication-title: J. Light. Technol.
– volume: 9
  start-page: 634
  year: 2015
  end-page: 637
  ident: bib0515
  article-title: Monitoring the railways by means of C-OTDR technology
  publication-title: Int. J. Mech. Aerosp. Ind. Mech. Eng.
– year: 2010
  ident: bib0550
  article-title: Low-cost self-referenced all-fibre polarimetric current sensor for the monitoring of current in the railway catenary
  publication-title: EWOFS’10) Fourth European Workshop on Optical Fibre Sensors, SPIE
– volume: 14
  start-page: 205
  year: 2009
  end-page: 221
  ident: bib0020
  article-title: The impact of climate change and weather on transport: an overview of empirical findings
  publication-title: Transp. Res. D Transp. Environ.
– volume: 78
  start-page: 543
  year: 2014
  end-page: 603
  ident: bib0440
  article-title: Brillouin scattering and its application in geosciences
  publication-title: Rev. Mineral. Geochem.
– volume: 123
  start-page: 337
  year: 2005
  ident: 10.1016/j.sna.2019.111728_bib0170
  article-title: Distributed fiber-optic frequency-domain Brillouin sensing
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2005.02.025
– volume: 1
  start-page: 107
  year: 1989
  ident: 10.1016/j.sna.2019.111728_bib0275
  article-title: Tensile strain dependence of Brillouin frequency shift in silica optical fibers
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/68.34756
– volume: 52
  start-page: 187
  year: 2001
  ident: 10.1016/j.sna.2019.111728_bib0425
  article-title: Capabilities and limitations of coherent optical frequency-domain reflectometry
  publication-title: J. Electr. Eng. Bratislava
– volume: 15
  start-page: 4996
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0075
  article-title: Sensor4PRI: A sensor platform for the protection of railway infrastructures
  publication-title: Sensors
  doi: 10.3390/s150304996
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0610
  article-title: Application of FBG sensing technique for monitoring and early warning system of high-speed railway track conditions
  publication-title: 2017 25th Optical Fiber Sensors Conference (OFS)
– volume: 20
  start-page: 11109
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0325
  article-title: All-fiber Mach-Zehnder interferometers for sensing applications
  publication-title: Opt. Express
  doi: 10.1364/OE.20.011109
– volume: 48
  start-page: 354
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0520
  article-title: Fibre optic track vibration monitoring system
  publication-title: Opt. Quantum Electron.
  doi: 10.1007/s11082-016-0616-9
– year: 2000
  ident: 10.1016/j.sna.2019.111728_bib0225
– year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0300
– year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0550
  article-title: Low-cost self-referenced all-fibre polarimetric current sensor for the monitoring of current in the railway catenary
  publication-title: EWOFS’10) Fourth European Workshop on Optical Fibre Sensors, SPIE
  doi: 10.1117/12.866433
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0565
  article-title: A temperature compensated fibre Bragg grating (FBG)-based sensor system for condition monitoring of electrified railway pantograph
  publication-title: 2017 25th Optical Fiber Sensors Conference (OFS)
– volume: 64
  start-page: 301
  year: 1998
  ident: 10.1016/j.sna.2019.111728_bib0695
  article-title: Independent component analysis by general nonlinear Hebbian-like learning rules
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(97)00197-7
– volume: 48
  start-page: 871
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0185
  article-title: Review: optical fiber sensors for civil engineering applications
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-013-0201-7
– year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0230
– volume: 27
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0635
  article-title: Railway track component condition monitoring using optical fibre Bragg grating sensors
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/27/5/055201
– volume: 18
  start-page: 980
  year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0340
  article-title: Embedded distributed optical fiber sensors in reinforced concrete structures—a case study
  publication-title: Sensors
  doi: 10.3390/s18040980
– volume: 253
  start-page: 91
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0680
  article-title: An optical fiber intrusion detection system for railway security
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2016.11.026
– year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0590
– start-page: 87110G
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0700
  publication-title: Int. Soc. Opt. Photon.
– volume: 2012
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0445
  article-title: Brillouin distributed fiber sensors: an overview and applications
  publication-title: J. Sens.
  doi: 10.1155/2012/204121
– volume: 1
  start-page: 54
  year: 2011
  ident: 10.1016/j.sna.2019.111728_bib0220
  article-title: Development of fully-distributed fiber sensors based on Brillouin scattering
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-010-0019-7
– start-page: 1
  year: 2009
  ident: 10.1016/j.sna.2019.111728_bib0430
  article-title: Optical frequency domain reflectometry: a review
  publication-title: 2009 11th International Conference on Transparent Optical Networks, IEEE
– volume: 54
  start-page: 104
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0010
  article-title: Deformation behavior of ballasted track during earthquakes
  publication-title: Quart. Report RTRI
  doi: 10.2219/rtriqr.54.104
– volume: 15
  start-page: 1263
  year: 1997
  ident: 10.1016/j.sna.2019.111728_bib0195
  article-title: Fiber Bragg grating technology fundamentals and overview
  publication-title: J. Light. Technol.
  doi: 10.1109/50.618320
– start-page: 699
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0100
  article-title: Rail health monitoring using acoustic emission technique based on NMF and RVM
  publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE
  doi: 10.1109/I2MTC.2015.7151353
– volume: 19
  start-page: 574
  year: 2019
  ident: 10.1016/j.sna.2019.111728_bib0460
  article-title: Comparative experimental study of a high-temperature raman-based distributed optical fiber sensor with different special fibers
  publication-title: Sensors
  doi: 10.3390/s19030574
– start-page: 99
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0370
  article-title: Ultrasound generation from a side-polished optical fiber
  publication-title: 2016 International Symposium on Flexible Automation (ISFA)
  doi: 10.1109/ISFA.2016.7790143
– volume: 63
  start-page: 189
  year: 2002
  ident: 10.1016/j.sna.2019.111728_bib0575
  article-title: Earthquake-induced landslides in Central America
  publication-title: Eng. Geol.
  doi: 10.1016/S0013-7952(01)00081-3
– start-page: 339
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0530
  article-title: Measurement of acoustic noise in field-deployed fiber optic cables
  publication-title: 2014 European Frequency and Time Forum (EFTF), IEEE
– year: 2005
  ident: 10.1016/j.sna.2019.111728_bib0395
– volume: 25
  start-page: 913
  year: 1989
  ident: 10.1016/j.sna.2019.111728_bib0240
  article-title: Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors
  publication-title: Electron. Lett.
  doi: 10.1049/el:19890612
– volume: 18
  start-page: 1353
  year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0175
  article-title: All-optical photoacoustic sensors for steel rebar corrosion monitoring
  publication-title: Sensors
  doi: 10.3390/s18051353
– volume: 7
  start-page: 83
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0205
  article-title: Tilted fiber Bragg grating sensors
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201100039
– year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0330
– volume: 2010
  year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0475
  article-title: Vibration detection using optical fiber sensors
  publication-title: J. Sens.
  doi: 10.1155/2010/936487
– start-page: 3
  year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0150
– year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0145
  article-title: Studies on geotechnical properties of subsoil in south east coastal region of India
  publication-title: IOP Conference Series: Materials Science and Engineering
  doi: 10.1088/1757-899X/263/3/032009
– volume: 24
  start-page: 256
  year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0085
  article-title: Rail–wheel interaction monitoring using Acoustic Emission: a laboratory study of normal rolling signals with natural rail defects
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2009.06.007
– year: 2008
  ident: 10.1016/j.sna.2019.111728_bib0525
– year: 2019
  ident: 10.1016/j.sna.2019.111728_bib0595
– volume: 62
  start-page: 679
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0260
  article-title: Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling
  publication-title: Geophys. Prospect.
  doi: 10.1111/1365-2478.12116
– start-page: 259
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0485
  article-title: Composite railway health monitoring system based on fiber optic bragg grating sensing array
  publication-title: 2014 IEEE Far East Forum on Nondestructive Evaluation/Testing
– volume: 8
  start-page: 1269
  year: 1990
  ident: 10.1016/j.sna.2019.111728_bib0280
  article-title: First measurement of strain distribution along field-installed optical fibers using Brillouin spectroscopy
  publication-title: J. Light. Technol.
  doi: 10.1109/50.59150
– volume: 2
  start-page: 357
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0415
  article-title: SHM by DOFS in civil engineering: a review
  publication-title: Struct. Monit. Maint.
– volume: 25
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0580
  article-title: Longitudinal force measurement in continuous welded rail with bi-directional FBG strain sensors
  publication-title: Smart Mater. Struct.
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0640
  article-title: Novel railway-subgrade vibration monitoring technology using phase-sensitive OTDR
  publication-title: 2017 25th Optical Fiber Sensors Conference (OFS)
– volume: 1
  start-page: 201
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0115
  article-title: The behaviour of railway level crossings: insights through field monitoring
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2014.05.002
– volume: 2018
  start-page: 14
  year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0670
  article-title: Performance deterioration of heavy-haul railway bridges under fatigue loading monitored by a multisensor system
  publication-title: J. Sens.
  doi: 10.1155/2018/5465391
– volume: 7
  start-page: 11620
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0255
  article-title: Distributed acoustic sensing for seismic monitoring of the near surface: a traffic-noise interferometry case study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-11986-4
– volume: 791-793
  start-page: 1901
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0660
  article-title: Research on evaluation method of the bridge strengthening effect based on Fiber optic sensor
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.791-793.1901
– volume: 47
  start-page: 1688
  year: 1999
  ident: 10.1016/j.sna.2019.111728_bib0690
  article-title: Finite-state Markov model for Rayleigh fading channels
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/26.803503
– volume: 116
  start-page: 33
  year: 2004
  ident: 10.1016/j.sna.2019.111728_bib0315
  article-title: An investigation of interference/intensity demodulated fiber-optic Fabry–Perot cavity sensor
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2004.03.021
– year: 2007
  ident: 10.1016/j.sna.2019.111728_bib0070
– start-page: 105
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0125
  article-title: Railroad track transitions with multidepth deflectometers and strain gauges
  publication-title: Transp. Res. Rec. J. Transp. Res. Board
  doi: 10.3141/2448-13
– year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0615
– volume: 8
  start-page: 362
  year: 2003
  ident: 10.1016/j.sna.2019.111728_bib0385
  article-title: Fiber optic sensors for bridge monitoring
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)1084-0702(2003)8:6(362)
– volume: 52
  start-page: 3770
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0585
  article-title: Real-time monitoring of railway traffic using slope-assisted Brillouin distributed sensors
  publication-title: Appl. Opt.
  doi: 10.1364/AO.52.003770
– volume: 2
  start-page: 1824
  year: 2007
  ident: 10.1016/j.sna.2019.111728_bib0060
  article-title: Utilization of fiber optic Bragg Grating sensing systems for health monitoring in railway applications
  publication-title: Struct. Health Monit.
– volume: 14
  start-page: R49
  year: 2003
  ident: 10.1016/j.sna.2019.111728_bib0200
  article-title: Optical fibre long-period grating sensors: characteristics and application
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/14/5/201
– volume: 30
  start-page: 1161
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0435
  article-title: Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2011.2170813
– volume: 2016
  start-page: 10
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0675
  article-title: Real-time distributed strain monitoring of a Railway Bridge during train passage by using a distributed optical Fiber sensor based on brillouin optical correlation domain analysis
  publication-title: J. Sens.
  doi: 10.1155/2016/9137531
– volume: 79
  start-page: 164
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0365
  article-title: Fiber optic ultrasound transmitters and their applications
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.10.002
– volume: 16
  start-page: 262
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0375
  article-title: Assessment of embedded fiber Bragg gratings for structural health monitoring of composites
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921716665563
– volume: 53
  start-page: 943
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0105
  article-title: Experimental investigation of Wheel/Rail rolling contact at railhead edge
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-012-9701-6
– year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0265
  article-title: Optical frequency domain reflectometry: principles and applications in fiber optic sensing, Fiber optic Sensors and Applications XIII
  publication-title: Int. Soc. Opt. Photon.
– volume: 10
  start-page: 1196
  year: 1992
  ident: 10.1016/j.sna.2019.111728_bib0245
  article-title: Brillouin characterization of fiber strain in bent slot-type optical-fiber cables
  publication-title: J. Light. Technol.
  doi: 10.1109/50.156868
– volume: 56
  start-page: 1751
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0630
  article-title: Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.07.005
– volume: 365
  start-page: 303
  year: 2007
  ident: 10.1016/j.sna.2019.111728_bib0045
  article-title: An introduction to structural health monitoring
  publication-title: Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2006.1928
– volume: 37
  start-page: 1735
  year: 1998
  ident: 10.1016/j.sna.2019.111728_bib0420
  article-title: High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.001735
– volume: 16
  start-page: 1401
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0655
  article-title: Safety monitoring of railway tunnel construction using FBG sensing technology
  publication-title: Adv. Struct. Eng.
  doi: 10.1260/1369-4332.16.8.1401
– volume: 15
  start-page: 654
  year: 1997
  ident: 10.1016/j.sna.2019.111728_bib0165
  article-title: Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements
  publication-title: J. Light. Technol.
  doi: 10.1109/50.566687
– start-page: 139
  year: 1991
  ident: 10.1016/j.sna.2019.111728_bib0310
– volume: 53
  start-page: 1850
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0490
  article-title: Development of a new time domain-based algorithm for train detection and axle counting
  publication-title: Veh. Syst. Dyn.
  doi: 10.1080/00423114.2015.1084427
– volume: 16
  start-page: 99
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0180
  article-title: Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials
  publication-title: Sensors
  doi: 10.3390/s16010099
– volume: 23
  start-page: 2081
  year: 2005
  ident: 10.1016/j.sna.2019.111728_bib0710
  article-title: Distributed fiber-optic intrusion sensor system
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2005.849924
– year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0250
– volume: 14
  start-page: 7451
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0465
  article-title: Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review
  publication-title: Sensors
  doi: 10.3390/s140407451
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0470
  article-title: Combination of phase-sensitive OTDR and michelson interferometer for nuisance alarm rate reducing and event identification
  publication-title: IEEE Photon. J.
– start-page: 351
  year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0685
  article-title: Intelligent acoustic and vibration recognition/alert systems for security breaching detection, close proximity danger identification, and perimeter protection
  publication-title: 2010 IEEE International Conference on Technologies for Homeland Security (HST), IEEE
  doi: 10.1109/THS.2010.5654931
– volume: 9
  start-page: 634
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0515
  article-title: Monitoring the railways by means of C-OTDR technology
  publication-title: Int. J. Mech. Aerosp. Ind. Mech. Eng.
– year: 2011
  ident: 10.1016/j.sna.2019.111728_bib0025
– start-page: 76530F
  year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0345
  article-title: Strain calibration of optical FBG-based strain sensors, fourth european workshop on optical fibre sensors
  publication-title: Int. Soc. Opt. Photon.
– volume: 53
  start-page: 157
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0040
  article-title: Prediction of compressive strength of self-compacting concrete using intelligent computational modeling
  publication-title: CMC-Comput. Mater. Continua
– year: 2019
  ident: 10.1016/j.sna.2019.111728_bib0140
– start-page: 362
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0705
  article-title: OptaSense: fibre optic distributed acoustic sensing for border monitoring
  publication-title: 2012 European Intelligence and Security Informatics Conference, IEEE
  doi: 10.1109/EISIC.2012.59
– year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0400
  article-title: The evolution of optical fiber sensors technologies during the 35 last years and their applications in structure health monitoring
  publication-title: EWSHM-7th European Workshop on Structural Health Monitoring
– volume: 4
  start-page: 173
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0665
  article-title: Rail expansion devices monitored by FBG sensors on an urban railway viaduct
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-014-0163-6
– volume: 13
  start-page: 4808
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0535
  article-title: Wheel flat detection in high-speed railway systems using Fiber bragg gratings
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2274008
– volume: 18
  start-page: 1879
  year: 2006
  ident: 10.1016/j.sna.2019.111728_bib0455
  article-title: Raman-based distributed temperature sensor with simplex coding and link optimization
  publication-title: IEEE Photo. Technol. Lett.
  doi: 10.1109/LPT.2006.881239
– volume: 4
  start-page: 135
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0500
  article-title: Railway structure monitoring solutions using fibre Bragg grating sensors
  publication-title: Int. J. Rail Transp.
  doi: 10.1080/23248378.2016.1184598
– volume: 229
  start-page: 280
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0645
  article-title: Dynamic monitoring of railway track displacement using an optical system
  publication-title: Arch. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 1989-1996
  doi: 10.1177/0954409713509980
– volume: 75
  start-page: 147
  year: 2004
  ident: 10.1016/j.sna.2019.111728_bib0570
  article-title: Earthquake losses due to ground failure
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2004.05.006
– year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0450
  article-title: Brillouin scattering in optical fibers and its application to distributed sensors
– year: 2019
  ident: 10.1016/j.sna.2019.111728_bib0360
  article-title: Highly sensitive miniature all-silica Fiber tip fabry-perot pressure sensor
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2019.2904420
– volume: 292
  start-page: 1
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0355
  article-title: Distributed fiber optic sensing technologies and applications–an overview
  publication-title: ACI Spec. Publ.
– year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0560
  article-title: A fibre optic sensor instrumented pantograph as part of a continuous structural health monitoring system for railway overhead lines
– volume: 16
  start-page: 245
  year: 2009
  ident: 10.1016/j.sna.2019.111728_bib0005
  article-title: Quantifying the effects of high summer temperatures due to climate change on buckling and rail related delays in south‐east United Kingdom
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.114
– volume: 13
  start-page: 2555
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0650
  article-title: Commissioning and evaluation of a fiber-optic sensor system for bridge monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2256599
– volume: 60-61
  start-page: 14
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0545
  article-title: Real-time monitoring of railway infrastructures using fibre Bragg grating sensors
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.01.003
– start-page: 185
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0380
  article-title: Structural health monitoring fiber optic sensors
– year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0155
– volume: 21
  start-page: 463
  year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0035
  article-title: Comparison of machine learning techniques to predict compressive strength of concrete
  publication-title: Comput. Concr.
– volume: 26
  start-page: 2055
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0505
  article-title: Real-time position and speed monitoring of trains using phase-sensitive OTDR
  publication-title: IEEE Photon.Technol. Lett.
  doi: 10.1109/LPT.2014.2346760
– volume: 3
  start-page: 154
  year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0065
  article-title: Condition monitoring of railway track using in-service vehicle
  publication-title: J. Mech. Syst. Transp. Logist.
  doi: 10.1299/jmtl.3.154
– volume: 37
  start-page: 418
  year: 2007
  ident: 10.1016/j.sna.2019.111728_bib0135
  article-title: A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts detection
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2007.893278
– volume: 8
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0405
  article-title: Current and future applications of distributed acoustic sensing as a new reservoir geophysics tool
  publication-title: Open Pet. Eng. J.
  doi: 10.2174/1874834101508010272
– volume: 60
  start-page: 104
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0285
  article-title: On-specimen strain measurement with fiber optic distributed sensing
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.054
– volume: 23
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0290
  article-title: An ultra-fast fiber optic pressure sensor for blast event measurements
  publication-title: Meas. Sci. Technol.
– year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0540
– volume: 14
  start-page: 70
  year: 2018
  ident: 10.1016/j.sna.2019.111728_bib0600
  article-title: Measurement of distributed dynamic rail strains using a Rayleigh backscatter based fiber optic sensor: lab and field evaluation
  publication-title: Transp. Geotech.
  doi: 10.1016/j.trgeo.2017.10.002
– year: 2003
  ident: 10.1016/j.sna.2019.111728_bib0190
– start-page: 415
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0720
– volume: 39
  start-page: 693
  year: 1981
  ident: 10.1016/j.sna.2019.111728_bib0270
  article-title: Optical frequency domain reflectometry in single‐mode fiber
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.92872
– year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0130
– volume: 52
  start-page: 141
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0110
  article-title: Measurement of vertical and longitudinal rail displacements using digital image correlation
  publication-title: Can. Geotech. J.
  doi: 10.1139/cgj-2013-0403
– volume: 41
  start-page: 226
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0555
  article-title: Pantograph–catenary monitoring by means of fibre Bragg grating sensors: results from tests in an underground line
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.06.030
– volume: 38
  start-page: 39
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0605
  article-title: Design and development of structural health monitoring system for smart railroad-gauge-facility using FBG sensors
  publication-title: Exp. Tech.
  doi: 10.1111/j.1747-1567.2012.00844.x
– volume: 22
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0350
  article-title: Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/22/7/075027
– year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0080
– volume: 14
  start-page: 205
  year: 2009
  ident: 10.1016/j.sna.2019.111728_bib0020
  article-title: The impact of climate change and weather on transport: an overview of empirical findings
  publication-title: Transp. Res. D Transp. Environ.
  doi: 10.1016/j.trd.2008.12.004
– volume: 17
  start-page: 2511
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0410
  article-title: A review of hybrid fiber-optic distributed simultaneous vibration and temperature sensing technology and its geophysical applications
  publication-title: Sensors
  doi: 10.3390/s17112511
– volume: 17
  start-page: 2368
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0215
  article-title: Review and Analysis of peak tracking techniques for fiber Bragg grating sensors
  publication-title: Sensors
  doi: 10.3390/s17102368
– year: 1922
  ident: 10.1016/j.sna.2019.111728_bib0050
– volume: 45
  start-page: 1077
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0295
  article-title: An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors
  publication-title: Measurement
  doi: 10.1016/j.measurement.2012.01.034
– year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0495
– volume: 4
  start-page: 81
  year: 2005
  ident: 10.1016/j.sna.2019.111728_bib0120
  article-title: Structural health monitoring in the railway industry: a review
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921705049764
– volume: 12
  start-page: 8601
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0235
  article-title: Recent progress in distributed fiber optic sensors
  publication-title: Sensors
  doi: 10.3390/s120708601
– start-page: 76533M
  year: 2010
  ident: 10.1016/j.sna.2019.111728_bib0480
  article-title: Real-time monitoring of railway traffic using fiber bragg gratings, fourth European Workshop on optical fibre sensors
  publication-title: Int. Soc. Opt. Photon.
– start-page: 226
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0320
  article-title: Mach-Zehnder interferometer as a temperature sensor based on the nested fiber ring resonator
  publication-title: 2013 Seventh International Conference on Sensing Technology (ICST), IEEE
  doi: 10.1109/ICSensT.2013.6727647
– volume: 48
  start-page: 1775
  year: 2012
  ident: 10.1016/j.sna.2019.111728_bib0015
  article-title: Climate change and infrastructure performance: should we worry about?
  publication-title: Procedia-Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2012.06.1152
– volume: 16
  start-page: 6346
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0620
  article-title: Development of level sensors based on Fiber bragg grating for railway track differential settlement measurement
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2574622
– year: 2008
  ident: 10.1016/j.sna.2019.111728_bib0030
– volume: 21
  start-page: 333
  year: 2003
  ident: 10.1016/j.sna.2019.111728_bib0390
  article-title: A feasibility study on the application of fiber-optic distributed sensors for strain measurement in the Taiwan Strait Tunnel Project
  publication-title: Mar. Georesources Geotechnol.
  doi: 10.1080/713773406
– start-page: 1
  year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0625
  article-title: Real-time monitoring of railroad track tension using a fiber Bragg grating-based strain sensor
  publication-title: Instrum. Sci. Technol.
– volume: 78
  start-page: 543
  year: 2014
  ident: 10.1016/j.sna.2019.111728_bib0440
  article-title: Brillouin scattering and its application in geosciences
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2014.78.14
– volume: 40
  start-page: 98
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0090
  article-title: Detection of crack growth in rail steel using acoustic emission
  publication-title: Ironmak. Steelmak.
  doi: 10.1179/1743281212Y.0000000051
– volume: 3
  start-page: 74
  year: 2013
  ident: 10.1016/j.sna.2019.111728_bib0210
  article-title: New approach to the strain analysis of bragg grating sensors
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-012-0091-2
– year: 2007
  ident: 10.1016/j.sna.2019.111728_bib0055
– start-page: 1046
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0095
  article-title: An investigation on rail health monitoring using acoustic emission technique by tensile test
  publication-title: Instrumentation and Measurement Technology Conference (I2MTC), 2015 IEEE International, IEEE
  doi: 10.1109/I2MTC.2015.7151415
– volume: 9
  start-page: 1698
  year: 2015
  ident: 10.1016/j.sna.2019.111728_bib0510
  article-title: The rail traffic management with usage of C-OTDR monitoring systems
  publication-title: Int. J. Comput. Electr. Autom. Control Inf. Eng.
– year: 2017
  ident: 10.1016/j.sna.2019.111728_bib0715
  article-title: Distributed fiber optic sensors for the monitoring of a tunnel crossing a landslide
  publication-title: EGU General Assembly Conference Abstracts
– volume: 16
  start-page: 748
  year: 2016
  ident: 10.1016/j.sna.2019.111728_bib0160
  article-title: A review of distributed optical fiber sensors for civil engineering applications
  publication-title: Sensors
  doi: 10.3390/s16050748
– year: 1993
  ident: 10.1016/j.sna.2019.111728_bib0335
– volume: 27
  start-page: 547
  year: 1988
  ident: 10.1016/j.sna.2019.111728_bib0305
  article-title: Optical fiber fabry-perot sensors
  publication-title: Appl. Opt.
  doi: 10.1364/AO.27.000547
SSID ssj0003377
Score 2.6351063
SecondaryResourceType review_article
Snippet [Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS...
In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111728
SubjectTerms Damage detection
Degradation
Detection
Electromagnetic interference
Fiber optic sensors
Fiber optics
Infrastructure
Inspection
Monitoring systems
Optical fibers
Railway bridges
Railway networks
Railway track
Railway tunnels
Railways
Real time
Sensors
Shafts (machine elements)
State-of-the-art reviews
Structural health monitoring
Traffic speed
Train
Weight reduction
Title A review of railway infrastructure monitoring using fiber optic sensors
URI https://dx.doi.org/10.1016/j.sna.2019.111728
https://www.proquest.com/docview/2436433345
Volume 303
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpCqTwwIZkmsfPwWFWUAqILVOpmOY6NikpSJUWIhd-OLw9eQh1Yo7OVnM_f3Sl33yF0xrTk0jGK0EAqwgKfEykpJ1FiEiXdIHF8aE6-mwTjKbuZ-bMWGja9MFBWWWN_heklWtdP-rU2-8v5vH_v2NSBeRZcObU5SgSMn4yFYOUX719lHpSW0xdBmIB082ezrPEqUqAecjkARwgD2f_2Tb9QunQ9ox20XceMeFC91i5q6XQPbX1jEtxHVwNcNaHgzOBczhev8g1b48llRRD7kmv8XF5fkMdQ7f6IDVSL4MyChsKFTWezvDhA09Hlw3BM6hkJRFHPXxGTUB2Z0A-l_U5XmYg70oOwIUgo9SS0ncbghilnccKMsb4pBMo5V9vQLYoTeojaaZbqI4SBCc0GD9yoxGUxd2Kjja9pENplxlNRBzmNdoSqCcRhjsVCNJViT8IqVIBCRaXQDjr_XLKs2DPWCbNG5eKHCQiL7uuWdZvjEfX9K4THqA21KGX-8f92PUGbHmTWZbVZF7XtWelTG36s4l5pXz20Mbi-HU8-AFd32JM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGOAAHxFMMBuTACala26SPHCfE6GDbBZC4RWmaoKHRTR0I8e-J-0CAEAeuVRy1jvPZVu3PAGdMSy5doxwaSuWwMOCOlJQ7cWYyJb0wcwNsTh5PwuSeXT8EDy24aHphsKyyxv4K00u0rp_0am32FtNp79a1qQPzLbhyanOUmK7AKrJTBW1Y7Q9vksknIFNaDmDE9Q4KND83yzKvZY7sQx5H7IhwJvvv7ukHUJfeZ7AFm3XYSPrVm21DS-c7sPGFTHAXrvqk6kMhc0MKOZ29yXdi7aeQFUfsa6HJc3mDcT3BgvdHYrBghMwtbiiytBntvFjuwf3g8u4iceoxCY6ifvDimIzq2ERBJO13esrE3JU-Rg5hRqkvsfM0RU9MOUszZox1TxGyznnaRm9xmtF9aOfzXB8AQTI0Gz9wozKPpdxNjTaBpmFkxYyv4g64jXaEqjnEcZTFTDTFYk_CKlSgQkWl0A6cf4osKgKNvxazRuXimxUIC_B_iXWb4xH1FVwKn1EbbVHKgsP_7XoKa8ndeCRGw8nNEaz7mGiXxWddaNtz08c2GnlJT2pr-wDV69tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+railway+infrastructure+monitoring+using+fiber+optic+sensors&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Du%2C+Cong&rft.au=Dutta%2C+Susom&rft.au=Kurup%2C+Pradeep&rft.au=Yu%2C+Tzuyang&rft.date=2020-03-01&rft.issn=0924-4247&rft.volume=303&rft.spage=111728&rft_id=info:doi/10.1016%2Fj.sna.2019.111728&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2019_111728
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon