A review of railway infrastructure monitoring using fiber optic sensors
[Display omitted] •Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitori...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 303; p. 111728 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.03.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | [Display omitted]
•Recent development of fiber optic sensing (FOS) technology for railway infrastructure monitoring is comprehensively reviewed.•Various FOS technologies and their respective working principles have been discussed.•Application of FOS for train operation and structural health monitoring is briefly discussed.•Aspects of the FOS design, installation, performance/accuracy, signal processing and data analysis algorithms are discussed.
In recent years, railway infrastructures and systems have played a significant role as a highly efficient transportation mode to meet the growing demand in transporting both cargo and passengers. Application of these structures in extreme environmental situation under severe working and loading conditions, caused by the traffic growth, heavier axles and vehicles and increase in speed makes it extremely susceptible to degradation and failure. In the last two decades, a significant number of innovative sensing technologies based on fiber optic sensors (FOS) have been utilized for structural health monitoring (SHM) due to their inherent distinctive advantages, such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. Fiber optic-based monitoring systems use quasi-distributed and continuously distributed sensing techniques for real time measurement and long term assessment of structural properties. This allows for early stage damage detection and characterization, leading to timely remediation and prevention of catastrophic failures. In this scenario, FOS have been proved to be a powerful tool for meticulous assessment of railway systems including train and track behavior by enabling real-time data collection, inspection and detection of structural degradation. This article reviews the current state-of-the-art of fiber optic sensing/monitoring technologies, including the basic principles of various optical fiber sensors, novel sensing and computational methodologies, and practical applications for railway infrastructure monitoring. Additionally, application of these technologies to monitor temperature, stresses, displacements, strain measurements, train speed, mass and location, axle counting, wheel imperfections, rail settlements, wear and tear and health assessment of railway bridges and tunnels will be thoroughly discussed. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0924-4247 1873-3069 |
DOI: | 10.1016/j.sna.2019.111728 |