Implementation of Er-doped random fiber laser self-mixing sensor with ultra-limit sensitivity
This study first demonstrates that the random distributed feedback fiber laser (RDFL) can be implemented for sensing detection by using the self-mixing effect as a sensing mechanism. By constructing a compact self-mixing velocimeter based on Er-doped RDFL with the integration of a laser, sensing ele...
Saved in:
Published in | APL photonics Vol. 9; no. 3; pp. 036113 - 036113-7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIP Publishing LLC
01.03.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | This study first demonstrates that the random distributed feedback fiber laser (RDFL) can be implemented for sensing detection by using the self-mixing effect as a sensing mechanism. By constructing a compact self-mixing velocimeter based on Er-doped RDFL with the integration of a laser, sensing element, and transmission platform, we successfully measured the minimum detectable feedback intensity of 38.65 fW for the velocity signal, corresponding to 0.55 photons per Doppler cycle, exhibiting ultra-high sensitivity dynamics characteristics. In addition, the velocity measurement of a non-cooperative target at a single-channel distance of 100 km is accomplished because of the natural feature of long-distance transmission for the random distributed feedback fiber lasers, which greatly improves the ultra-long detection range in the field of self-mixing sensing. The proposed sensing scheme not only unveils a fresh perspective on the exploration of random fiber laser sensing but also showcases its diverse and wide-ranging applications within the realm of remote sensing measurements. |
---|---|
ISSN: | 2378-0967 2378-0967 |
DOI: | 10.1063/5.0192626 |