Short-range screened density matrix functional for proper descriptions of thermochemistry, thermochemical kinetics, nonbonded interactions, and singlet diradicals

Common one-electron reduced density matrix (1-RDM) functionals that depend on Coulomb and exchange-only integrals tend to underestimate dynamic correlation, preventing reduced density matrix functional theory (RDMFT) from achieving comparable accuracy to density functional theory in main-group therm...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 159; no. 17
Main Authors Ai, Wenna, Su, Neil Qiang, Fang, Wei-Hai
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Common one-electron reduced density matrix (1-RDM) functionals that depend on Coulomb and exchange-only integrals tend to underestimate dynamic correlation, preventing reduced density matrix functional theory (RDMFT) from achieving comparable accuracy to density functional theory in main-group thermochemistry and thermochemical kinetics. The recently developed ωP22 functional introduces a semi-local density functional to screen the erroneous short-range portion of 1-RDM functionals without double-counting correlation, potentially providing a better treatment of dynamic correlation around equilibrium geometries. Herein, we systematically evaluate the performance of this functional model, which consists of two parameters, on main-group thermochemistry, thermochemical kinetics, nonbonded interactions, and more. Tests on atomization energies, vibrational frequencies, and reaction barriers reveal that the ωP22 functional model can reliably predict properties at equilibrium and slightly away from equilibrium geometries. In particular, it outperforms commonly used density functionals in the prediction of reaction barriers, nonbonded interactions, and singlet diradicals, thus enhancing the predictive power of RDMFT for routine calculations of thermochemistry and thermochemical kinetics around equilibrium geometries. Further development is needed in the future to refine short- and long-range approximations in the functional model in order to achieve an excellent description of properties both near and far from equilibrium geometries.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0169234