Effect of surface temperature on quantum dynamics of D2 on Cu(111) using a chemically accurate potential energy surface

The effect of surface mode vibrations on the reactive scattering of D2, initialized in the ground rovibrational state (v = 0, j = 0), from a Cu(111) surface is investigated for different surface temperature situations. We adopt a time and temperature dependent effective Hamiltonian [Dutta et al., J....

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 157; no. 19; pp. 194112 - 194125
Main Authors Dutta, Joy, Naskar, Koushik, Adhikari, Satrajit, Meyer, Jörg, Somers, Mark F.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 21.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of surface mode vibrations on the reactive scattering of D2, initialized in the ground rovibrational state (v = 0, j = 0), from a Cu(111) surface is investigated for different surface temperature situations. We adopt a time and temperature dependent effective Hamiltonian [Dutta et al., J. Chem. Phys. 154, 104103 (2021)] constructed by combining the linearly coupled many oscillator model [Sahoo et al., J. Chem. Phys. 136, 084306 (2012)] and the static corrugation model [M. Wijzenbroek and M. F. Somers, J. Chem. Phys. 137, 054703 (2012)] potential within the mean-field approach. Such an effective Hamiltonian is employed for six-dimensional quantum dynamical calculations to obtain temperature dependent reaction and state-to-state scattering probability profiles as a function of incidence energy of colliding D2 molecules. As reported in the experimental studies, the movements of surface atoms modify the dissociative scattering dynamics at higher surface temperature by exhibiting vibrational quantum and surface atoms’ recoil effects in the low and high collision energy domains, respectively. Finally, we compare our present theoretical results with the experimental and other theoretical outcomes, as well as discuss the novelty of our findings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/5.0109549