Crossed-beam slowing to enhance narrow-line ytterbium magneto-optic traps

We demonstrate a method to enhance the atom loading rate of a ytterbium (Yb) magneto-optic trap (MOT) operating on the 556 nm 1S0 → 3P1 intercombination transition (narrow linewidth Γg = 2π × 182 kHz). Following traditional Zeeman slowing of an atomic beam near the 399 nm 1S0 → 1P1 transition (broad...

Full description

Saved in:
Bibliographic Details
Published inReview of scientific instruments Vol. 91; no. 9; pp. 093201 - 93206
Main Authors Plotkin-Swing, Benjamin, Wirth, Anna, Gochnauer, Daniel, Rahman, Tahiyat, McAlpine, Katherine E., Gupta, Subhadeep
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate a method to enhance the atom loading rate of a ytterbium (Yb) magneto-optic trap (MOT) operating on the 556 nm 1S0 → 3P1 intercombination transition (narrow linewidth Γg = 2π × 182 kHz). Following traditional Zeeman slowing of an atomic beam near the 399 nm 1S0 → 1P1 transition (broad linewidth Γp = 2π × 29 MHz), two laser beams in a crossed-beam geometry, frequency tuned near the same transition, provide additional slowing immediately prior to the MOT. Using this technique, we observe an improvement by a factor of 6 in the atom loading rate of a narrow-line Yb MOT. The relative simplicity and generality of this approach make it readily adoptable to other experiments involving narrow-line MOTs. We also present a numerical simulation of this two-stage slowing process, which shows good agreement with the observed dependence on experimental parameters, and use it to assess potential improvements to the method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0034-6748
1089-7623
1089-7623
DOI:10.1063/5.0011361