Self-similar collapse in Painlevé–Gullstrand coordinates
We report a family of self-similar exact solutions in General Relativity. The solutions are found in a Painleve-Gullstrand coordinate system but can also be transformed smoothly into a diagonal form. The solutions represent a gravitational collapse leading to three possible outcomes, depending on th...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 84; no. 6; pp. 600 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
10.06.2024
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report a family of self-similar exact solutions in General Relativity. The solutions are found in a Painleve-Gullstrand coordinate system but can also be transformed smoothly into a diagonal form. The solutions represent a gravitational collapse leading to three possible outcomes, depending on the parameter space: (i) a collapse followed by a bounce and dispersal of the clustered matter distribution, (ii) a rapid collapse followed by a bounce and an eventual re-collapse, and (iii) a standard collapse leading to zero proper volume. Profiles of the energy conditions are studied for all of the scenarios, and it is noted that a bounce is usually associated with a violation of the Null Energy Condition. It is found that more than one null surfaces (apparent horizons) can develop during the collapse. We also discuss that for a general metric tensor having a conformal symmetry, some regions of the parameter space allows a formation of null throat, much like a wormhole. Matching the metric with a Schwarzschild metric in Painleve–Gullstrand form leads to the geodesic equation for a zero energy falling particle in the exterior. |
---|---|
ISSN: | 1434-6052 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-024-12962-9 |