On the double Roman domination in graphs

A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The w...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 232; pp. 1 - 7
Main Authors Abdollahzadeh Ahangar, Hossein, Chellali, Mustapha, Sheikholeslami, Seyed Mahmoud
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 11.12.2017
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A double Roman dominating function (DRDF) on a graph G=(V,E) is a function f:V(G)→{0,1,2,3} having the property that if f(v)=0, then vertex v has at least two neighbors assigned 2 under f or one neighbor w with f(w)=3, and if f(v)=1, then vertex v must have at least one neighbor w with f(w)≥2. The weight of a DRDF is the value f(V(G))=∑u∈V(G)f(u). The double Roman domination number γdR(G) is the minimum weight of a DRDF on G. First we show that the decision problem associated with γdR(G) is NP-complete for bipartite and chordal graphs. Then we present some sharp bounds on the double Roman domination number which partially answer an open question posed by Beeler et al. (2016) in their introductory paper on double Roman domination. Moreover, a characterization of graphs G with small γdR(G) is provided.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2017.06.014