Ultra-Large Gain Step-Up Switched-Capacitor DC-DC Converter With Coupled Inductor for Alternative Sources of Energy

An ultra-large voltage conversion ratio converter is proposed by integrating a switched-capacitor circuit with a coupled inductor technology. The proposed converter can be seen as an equivalent parallel connection to the load of a basic boost converter and a number of forward converters, each one co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. I, Regular papers Vol. 59; no. 4; pp. 864 - 874
Main Authors Tsorng-Juu Liang, Shih-Ming Chen, Lung-Sheng Yang, Jiann-Fuh Chen, Ioinovici, A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2012
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An ultra-large voltage conversion ratio converter is proposed by integrating a switched-capacitor circuit with a coupled inductor technology. The proposed converter can be seen as an equivalent parallel connection to the load of a basic boost converter and a number of forward converters, each one containing a switched-capacitor circuit. All the stages are activated by the boost switch. A single active switch is required, with no need of extreme duty-ratio values. The leakage energy of the coupled inductor is recycled to the load. The inrush current problem of switched capacitors is restrained by the leakage inductance of the coupled-inductor. The above features are the reason for the high efficiency performance. The operating principles and steady state analyses of continuous, discontinuous and boundary conduction modes are discussed in detail. To verify the performance of the proposed converter, a 200 W/20 V to 400 V prototype was implemented. The maximum measured efficiency is 96.4%. The full load efficiency is 95.1%.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2011.2169886