Inferring video QoE in real time
Inferring the subjective perception of a video stream in real time continues to be a stiff problem. This article presents MintMOS: a lightweight, no-reference, loadable kernel module to infer the QoE of a video stream in transit and offer suggestions to improve it. MintMOS revolves around one-time o...
Saved in:
Published in | IEEE network Vol. 25; no. 1; pp. 4 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inferring the subjective perception of a video stream in real time continues to be a stiff problem. This article presents MintMOS: a lightweight, no-reference, loadable kernel module to infer the QoE of a video stream in transit and offer suggestions to improve it. MintMOS revolves around one-time offline construction of a k-dimensional space, which we call the QoE space. A QoE space is a known characterization of subjective perception for any k parameters (network dependent/ independent) that affect it. We create N partitions of the QoE space by generating N video samples for various values of the k parameters and conducting subjective surveys using them. Every partition then has an expected QoE associated with it. Instantaneous parameters of a real-time video stream are compared to the precomputed QoE space to both infer and offer suggestions to improve QoE. Inferring QoE is a lightweight algorithm that runs in linear time. We implemented MintMOS by creating an actual QoE space using three parameters and 27 partitions by conducting surveys with 77 human subjects. In a second set of surveys using 13 video clips, MintMOS's predictions were compared to 49 human responses. Results show that our MOS predictions are in close agreement with subjective perceptions. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0890-8044 1558-156X |
DOI: | 10.1109/MNET.2011.5687947 |