High order semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators for nonlinear Vlasov dynamics

In this paper, we propose a semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators (SLDG-RKEI) for nonlinear Vlasov dynamics. The commutator-free Runge-Kutta (RK) exponential integrators (EI) were proposed by Celledoni, et al. (FGCS, 2003). In the nonlinear tr...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 427; p. 110036
Main Authors Cai, Xiaofeng, Boscarino, Sebastiano, Qiu, Jing-Mei
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 15.02.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we propose a semi-Lagrangian discontinuous Galerkin method coupled with Runge-Kutta exponential integrators (SLDG-RKEI) for nonlinear Vlasov dynamics. The commutator-free Runge-Kutta (RK) exponential integrators (EI) were proposed by Celledoni, et al. (FGCS, 2003). In the nonlinear transport setting, the RKEI can be used to decompose the evolution of the nonlinear transport into a composition of a sequence of linearized dynamics. The resulting linearized transport equations can be solved by the semi-Lagrangian (SL) discontinuous Galerkin (DG) method proposed in Cai, et al. (JSC, 2017). The proposed method can achieve high order spatial accuracy via the SLDG framework, and high order temporal accuracy via the RK EI. Due to the SL nature, the proposed SLDG-RKEI method is not subject to the CFL condition, thus they have the potential in using larger time-stepping sizes than those in the Eulerian approach. Inheriting advantages from the SLDG method, the proposed SLDG-RKEI schemes are mass conservative, positivity-preserving, have no dimensional splitting error, perform well in resolving complex solution structures, and can be evolved with adaptive time stepping sizes. We show the performance of the SLDG-RKEI algorithm by classical test problems for the nonlinear Vlasov-Poisson system, as well as the Guiding center Vlasov model. Though that it is not our focus of this paper to explore the SLDG-RKEI scheme for nonlinear hyperbolic conservation laws that develop shocks, we show some preliminary results on schemes' performance on the Burgers' equation. •Semi-Lagrangian DG method with RK exponential integrator.•Nonlinear transport problems.•High order accuracy in both space and time and mass conservation.•Allows for extra large time stepping sizes with stability for better efficiency.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2020.110036