Context and Spatial Feature Calibration for Real-Time Semantic Segmentation

Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinder...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 32; pp. 5465 - 5477
Main Authors Li, Kaige, Geng, Qichuan, Wan, Maoxian, Cao, Xiaochun, Zhou, Zhong
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinders their widespread application in real-time scenarios. In this work, we propose a lightweight Context and Spatial Feature Calibration Network (CSFCN) to address the above issues with pooling-based and sampling-based attention mechanisms. CSFCN contains two core modules: Context Feature Calibration (CFC) module and Spatial Feature Calibration (SFC) module. CFC adopts a cascaded pyramid pooling module to efficiently capture nested contexts, and then aggregates private contexts for each pixel based on pixel-context similarity to realize context feature calibration. SFC splits features into multiple groups of sub-features along the channel dimension and propagates sub-features therein by the learnable sampling to achieve spatial feature calibration. Extensive experiments on the Cityscapes and CamVid datasets illustrate that our method achieves a state-of-the-art trade-off between speed and accuracy. Concretely, our method achieves 78.7% mIoU with 70.0 FPS and 77.8% mIoU with 179.2 FPS on the Cityscapes and CamVid test sets, respectively. The code is available at https://nave.vr3i.com/ and https://github.com/kaigelee/CSFCN .
AbstractList Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinders their widespread application in real-time scenarios. In this work, we propose a lightweight Context and Spatial Feature Calibration Network (CSFCN) to address the above issues with pooling-based and sampling-based attention mechanisms. CSFCN contains two core modules: Context Feature Calibration (CFC) module and Spatial Feature Calibration (SFC) module. CFC adopts a cascaded pyramid pooling module to efficiently capture nested contexts, and then aggregates private contexts for each pixel based on pixel-context similarity to realize context feature calibration. SFC splits features into multiple groups of sub-features along the channel dimension and propagates sub-features therein by the learnable sampling to achieve spatial feature calibration. Extensive experiments on the Cityscapes and CamVid datasets illustrate that our method achieves a state-of-the-art trade-off between speed and accuracy. Concretely, our method achieves 78.7% mIoU with 70.0 FPS and 77.8% mIoU with 179.2 FPS on the Cityscapes and CamVid test sets, respectively. The code is available at https://nave.vr3i.com/ and https://github.com/kaigelee/CSFCN.Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinders their widespread application in real-time scenarios. In this work, we propose a lightweight Context and Spatial Feature Calibration Network (CSFCN) to address the above issues with pooling-based and sampling-based attention mechanisms. CSFCN contains two core modules: Context Feature Calibration (CFC) module and Spatial Feature Calibration (SFC) module. CFC adopts a cascaded pyramid pooling module to efficiently capture nested contexts, and then aggregates private contexts for each pixel based on pixel-context similarity to realize context feature calibration. SFC splits features into multiple groups of sub-features along the channel dimension and propagates sub-features therein by the learnable sampling to achieve spatial feature calibration. Extensive experiments on the Cityscapes and CamVid datasets illustrate that our method achieves a state-of-the-art trade-off between speed and accuracy. Concretely, our method achieves 78.7% mIoU with 70.0 FPS and 77.8% mIoU with 179.2 FPS on the Cityscapes and CamVid test sets, respectively. The code is available at https://nave.vr3i.com/ and https://github.com/kaigelee/CSFCN.
Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinders their widespread application in real-time scenarios. In this work, we propose a lightweight Context and Spatial Feature Calibration Network (CSFCN) to address the above issues with pooling-based and sampling-based attention mechanisms. CSFCN contains two core modules: Context Feature Calibration (CFC) module and Spatial Feature Calibration (SFC) module. CFC adopts a cascaded pyramid pooling module to efficiently capture nested contexts, and then aggregates private contexts for each pixel based on pixel-context similarity to realize context feature calibration. SFC splits features into multiple groups of sub-features along the channel dimension and propagates sub-features therein by the learnable sampling to achieve spatial feature calibration. Extensive experiments on the Cityscapes and CamVid datasets illustrate that our method achieves a state-of-the-art trade-off between speed and accuracy. Concretely, our method achieves 78.7% mIoU with 70.0 FPS and 77.8% mIoU with 179.2 FPS on the Cityscapes and CamVid test sets, respectively. The code is available at https://nave.vr3i.com/ and https://github.com/kaigelee/CSFCN .
Author Li, Kaige
Wan, Maoxian
Geng, Qichuan
Cao, Xiaochun
Zhou, Zhong
Author_xml – sequence: 1
  givenname: Kaige
  orcidid: 0000-0002-1716-4381
  surname: Li
  fullname: Li, Kaige
  email: lkg@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
– sequence: 2
  givenname: Qichuan
  surname: Geng
  fullname: Geng, Qichuan
  email: gengqichuan1989@cnu.edu.cn
  organization: Information Engineering College, Capital Normal University, Beijing, China
– sequence: 3
  givenname: Maoxian
  orcidid: 0009-0000-5396-0185
  surname: Wan
  fullname: Wan, Maoxian
  email: wanmaoxian@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
– sequence: 4
  givenname: Xiaochun
  orcidid: 0000-0001-7141-708X
  surname: Cao
  fullname: Cao, Xiaochun
  email: caoxiaochun@mail.sysu.edu.cn
  organization: School of Cyber Science and Technology, Shenzhen Campus, Sun Yat-sen University, Shenzhen, China
– sequence: 5
  givenname: Zhong
  orcidid: 0000-0002-5825-7517
  surname: Zhou
  fullname: Zhou, Zhong
  email: zz@buaa.edu.cn
  organization: State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China
BookMark eNp9kLtOwzAUQC1URB-wMzBEYmFJsX3j2B5RRQFRCUTLHLnJLXKVOMVxJfh7XNoBdWDylXWOH2dIeq51SMglo2PGqL5dPL2OOeUwBmBK5_KEDJjOWEppxntxpkKmkmW6T4Zdt6aUZYLlZ6QPUkrQVA_I86R1Ab9CYlyVzDcmWFMnUzRh6zGZmNoufdxrXbJqffKGpk4XtsFkjo1xwZZx-GjQhV_mnJyuTN3hxWEdkffp_WLymM5eHp4md7O0BC5CyismSiHAKGMUCipQKoZqyTWvpM6WSlRSlTIXGc0BUJWKxi8anYFSIKGCEbnZn7vx7ecWu1A0tiuxro3DdtsVXEmqdc6iPSLXR-i63XoXXxcpxQQXOahI0T1V-rbrPK6KjbeN8d8Fo8UudBFDF7vQxSF0VPIjpbT7CsEbW_8nXu1Fi4h_7uG5AsjgB4sLiHM
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3529812
crossref_primary_10_1109_TIP_2024_3425048
crossref_primary_10_1109_TIP_2025_3526054
crossref_primary_10_1109_TGRS_2024_3516501
crossref_primary_10_1016_j_neucom_2024_128991
crossref_primary_10_3390_drones8080400
crossref_primary_10_1016_j_jksuci_2024_102226
crossref_primary_10_1088_1361_6501_ada2b6
Cites_doi 10.1007/s11263-021-01515-2
10.1007/s11263-015-0816-y
10.1109/TMM.2022.3157995
10.1109/CVPR.2016.350
10.1109/TITS.2021.3115705
10.1109/TITS.2017.2750080
10.1109/CVPR.2016.90
10.1109/CVPR.2017.549
10.1109/TIP.2021.3102509
10.1109/WACV48630.2021.00360
10.1109/CVPR46437.2021.00405
10.1109/CVPR46437.2021.00959
10.1007/978-3-540-88682-2_5
10.1109/CVPR.2015.7298965
10.1109/CVPR52729.2023.01871
10.1109/TITS.2020.2980426
10.1109/CVPRW.2019.00168
10.1109/CVPR.2017.660
10.1007/978-3-030-01264-9_8
10.1109/WACV48630.2021.00305
10.1007/978-3-030-58452-8_45
10.1109/TITS.2022.3150350
10.1109/WACV.2019.00195
10.1109/TITS.2022.3228042
10.1109/TITS.2020.3037727
10.1109/CVPR.2019.00975
10.1109/TIP.2020.3042065
10.1109/TMM.2021.3088639
10.1109/WACV.2018.00163
10.1109/ICCV48922.2021.00061
10.1109/TIP.2020.2976856
10.1109/ICCV.2019.00068
10.1109/CVPR.2019.00941
10.1007/978-3-030-01261-8_20
10.1109/CVPR.2018.00813
10.1109/TITS.2020.3044672
10.1007/s11263-021-01465-9
10.1109/TCSVT.2021.3121680
10.1109/ICRA46639.2022.9811930
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2019.00326
10.1109/CVPR.2018.00388
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2023.3318967
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 5477
ExternalDocumentID 10_1109_TIP_2023_3318967
10268334
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62272018
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB2100603
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c325t-2d15c553a8aa8e505e781e8b292d794b85d78c76540633e8c80023a94388373d3
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 16:44:01 EDT 2025
Mon Jun 30 08:36:52 EDT 2025
Tue Jul 01 02:18:57 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Wed Aug 27 02:25:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-2d15c553a8aa8e505e781e8b292d794b85d78c76540633e8c80023a94388373d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7141-708X
0009-0000-5396-0185
0000-0002-1716-4381
0000-0002-5825-7517
PMID 37773909
PQID 2881525638
PQPubID 85429
PageCount 13
ParticipantIDs proquest_miscellaneous_2870996163
proquest_journals_2881525638
ieee_primary_10268334
crossref_primary_10_1109_TIP_2023_3318967
crossref_citationtrail_10_1109_TIP_2023_3318967
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref52
ref11
ref10
ref17
paszke (ref27) 2016
ref16
ref19
ref18
ronneberger (ref7) 2015
ref51
ref50
ref45
li (ref39) 2019
ref48
ref47
ref42
orši? (ref9) 2021; 110
ref41
ref44
ref43
ref8
huang (ref22) 2022; 44
ref4
ref3
chen (ref40) 2017
ref6
wu (ref26) 2022
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
xie (ref46) 2021; 34
si (ref49) 2020
ref24
ref23
ref25
ref20
ref21
ref28
ref29
peng (ref13) 2022
References_xml – volume: 44
  start-page: 550
  year: 2022
  ident: ref22
  article-title: AlignSeg: Feature-aligned segmentation networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref33
  doi: 10.1007/s11263-021-01515-2
– ident: ref38
  doi: 10.1007/s11263-015-0816-y
– ident: ref31
  doi: 10.1109/TMM.2022.3157995
– ident: ref19
  doi: 10.1109/CVPR.2016.350
– year: 2017
  ident: ref40
  article-title: Rethinking atrous convolution for semantic image segmentation
  publication-title: arXiv 1706 05587
– start-page: 234
  year: 2015
  ident: ref7
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– year: 2019
  ident: ref39
  article-title: Spatial group-wise enhance: Improving semantic feature learning in convolutional networks
  publication-title: arXiv 1905 09646
– ident: ref2
  doi: 10.1109/TITS.2021.3115705
– ident: ref28
  doi: 10.1109/TITS.2017.2750080
– start-page: 1
  year: 2020
  ident: ref49
  article-title: Real-time semantic segmentation via multiple spatial fusion network
  publication-title: Proc Brit Mach Vis Conf
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref8
  doi: 10.1109/CVPR.2017.549
– ident: ref1
  doi: 10.1109/TIP.2021.3102509
– year: 2016
  ident: ref27
  article-title: ENet: A deep neural network architecture for real-time semantic segmentation
  publication-title: ArXiv 1606 02147
– ident: ref43
  doi: 10.1109/WACV48630.2021.00360
– ident: ref48
  doi: 10.1109/CVPR46437.2021.00405
– ident: ref36
  doi: 10.1109/CVPR46437.2021.00959
– ident: ref20
  doi: 10.1007/978-3-540-88682-2_5
– ident: ref3
  doi: 10.1109/CVPR.2015.7298965
– ident: ref15
  doi: 10.1109/CVPR52729.2023.01871
– ident: ref14
  doi: 10.1109/TITS.2020.2980426
– volume: 34
  start-page: 12077
  year: 2021
  ident: ref46
  article-title: SegFormer: Simple and efficient design for semantic segmentation with transformers
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref42
  doi: 10.1109/CVPRW.2019.00168
– ident: ref4
  doi: 10.1109/CVPR.2017.660
– ident: ref51
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref45
  doi: 10.1109/WACV48630.2021.00305
– volume: 110
  year: 2021
  ident: ref9
  article-title: Efficient semantic segmentation with pyramidal fusion
  publication-title: Pattern Recognit
– ident: ref17
  doi: 10.1007/978-3-030-58452-8_45
– ident: ref35
  doi: 10.1109/TITS.2022.3150350
– ident: ref52
  doi: 10.1109/WACV.2019.00195
– ident: ref41
  doi: 10.1109/TITS.2022.3228042
– year: 2022
  ident: ref26
  article-title: P2T: Pyramid pooling transformer for scene understanding
  publication-title: IEEE Trans Pattern Anal Mach Intell
– ident: ref10
  doi: 10.1109/TITS.2020.3037727
– ident: ref34
  doi: 10.1109/CVPR.2019.00975
– ident: ref44
  doi: 10.1109/TIP.2020.3042065
– ident: ref50
  doi: 10.1109/TMM.2021.3088639
– ident: ref23
  doi: 10.1109/WACV.2018.00163
– ident: ref25
  doi: 10.1109/ICCV48922.2021.00061
– ident: ref30
  doi: 10.1109/TIP.2020.2976856
– ident: ref21
  doi: 10.1109/ICCV.2019.00068
– ident: ref29
  doi: 10.1109/CVPR.2019.00941
– ident: ref32
  doi: 10.1007/978-3-030-01261-8_20
– ident: ref18
  doi: 10.1109/CVPR.2018.00813
– ident: ref11
  doi: 10.1109/TITS.2020.3044672
– ident: ref24
  doi: 10.1007/s11263-021-01465-9
– ident: ref12
  doi: 10.1109/TCSVT.2021.3121680
– ident: ref47
  doi: 10.1109/ICRA46639.2022.9811930
– ident: ref5
  doi: 10.1007/978-3-030-01234-2_49
– year: 2022
  ident: ref13
  article-title: PP-LiteSeg: A superior real-time semantic segmentation model
  publication-title: arXiv 2204 02681
– ident: ref16
  doi: 10.1109/CVPR.2019.00326
– ident: ref6
  doi: 10.1109/CVPR.2018.00388
SSID ssj0014516
Score 2.5118594
Snippet Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5465
SubjectTerms Aggregates
Calibration
Context
context feature calibration
Context modeling
Misalignment
Modules
Pixels
Real time
Real-time semantic segmentation
Real-time systems
Sampling
Semantic segmentation
Semantics
spatial feature calibration
Transformers
Title Context and Spatial Feature Calibration for Real-Time Semantic Segmentation
URI https://ieeexplore.ieee.org/document/10268334
https://www.proquest.com/docview/2881525638
https://www.proquest.com/docview/2870996163
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6anNpDXk3pNmlwoZce5DiSZcnHEBLygFDaBHIzkjxbSrPekthQ-uszI2uXtCUlN4HHQvbMSN9oXgAfSQbcNGgnSuOsKHXthNNFK7AyrdJYGutitMVldXpdnt_om5SsHnNhEDEGn2HOw-jLb-dh4Ksy0nBZWaXKFVghy21M1lq6DLjjbHRtaiMM4f6FT7Ko96_OPufcJjxXJMF1xY33lDGGzP36j-Mo9lf5Z1OOJ83JOlwu1jgGmPzIh97n4fdf5Ruf_REbsJYwZ3Y4CskmvMBuC9YT_sySdt9vwatHxQlfw0UsXPWrz1xHRBx4TXMwYhzuMOOULj8KT0awN_tCeFNwOkn2FWfErO-BBt9mKbGp24brk-Oro1ORWi-IoKTuhWwPdNBaOeucRUJJaOwBWi9r2ZIGe6tbY4OpCO9VSqENjDuVq0tlyeJVrXoDq928w7eQuWLqnJTopwS9sKh9kM6jnZrSVxZLnMD-ggNNSHXJuT3GbRPtk6JuiH0Ns69J7JvAp-UbP8eaHP-h3WYWPKIb__4EdhdcbpLW3jfSWm4HRVvSBD4sH5O-sRPFdTgfmMYQqK4Ixr57YuodeMkrGO9pdmG1vxvwPSGX3u9FiX0AArzmMw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcgAOLZSibikQJDhwcJracewcOCCg2mVLhWAr9RZsZxZV0CzqJuLnXXgVno2x412tQHCrxM1SJlZiz3i-8fwBPCIeMFMnDcuV0SyXpWFGZjXDQtVCYq60CdEWx8XwJH91Kk_X4McyFwYRQ_AZpn4YfPn1zHX-qowknBdaiDzGUI7x2xey0OZPRy9oOx9zfvhy8nzIYhMB5gSXLeP1gXRSCqON0Uj6HpU-QG15yWviRatlrbRTBSGXQgjUziMoYcpcaLLdRC1o3itwlYCG5H162NJJ4XvcBmeqVEyRpbHwgmbl_mT0JvWNyVNBMlMWvtWfUEqJ0gc-rijA0NHlDzUQdNvhJvxcrEof0vIx7Vqbuu-_FYz8b5ftJmxEVJ0868XgFqxhswWbEWEn8fyab8GNlfKLt2EcSnN9bRPTEJEPLac5PCbuLjDxSWu2F4-EgH3ylhA18wkzyTs8J3Y8czT4cB5Tt5ptOLmUH7wD682swR1ITDY1hnO0UwKXmJXWcWNRT1VuC405DmB_seOVi5XXfQOQT1WwwLKyInapPLtUkV0G8GT5xue-6sg_aLf9lq_Q9bs9gL0FV1XxXJpXXGvf8IoO3QE8XD6mE8W7iUyDs87TKDIbCgLqu3-Z-gFcG05eH1VHo-PxXbjuv6a_ldqD9faiw3uE01p7P0hLAu8vm89-AUSkP78
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context+and+Spatial+Feature+Calibration+for+Real-Time+Semantic+Segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Kaige&rft.au=Geng%2C+Qichuan&rft.au=Wan%2C+Maoxian&rft.au=Cao%2C+Xiaochun&rft.date=2023&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=32&rft.spage=5465&rft.epage=5477&rft_id=info:doi/10.1109%2FTIP.2023.3318967&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2023_3318967
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon