Context and Spatial Feature Calibration for Real-Time Semantic Segmentation
Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinder...
Saved in:
Published in | IEEE transactions on image processing Vol. 32; pp. 5465 - 5477 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Context modeling or multi-level feature fusion methods have been proved to be effective in improving semantic segmentation performance. However, they are not specialized to deal with the problems of pixel-context mismatch and spatial feature misalignment, and the high computational complexity hinders their widespread application in real-time scenarios. In this work, we propose a lightweight Context and Spatial Feature Calibration Network (CSFCN) to address the above issues with pooling-based and sampling-based attention mechanisms. CSFCN contains two core modules: Context Feature Calibration (CFC) module and Spatial Feature Calibration (SFC) module. CFC adopts a cascaded pyramid pooling module to efficiently capture nested contexts, and then aggregates private contexts for each pixel based on pixel-context similarity to realize context feature calibration. SFC splits features into multiple groups of sub-features along the channel dimension and propagates sub-features therein by the learnable sampling to achieve spatial feature calibration. Extensive experiments on the Cityscapes and CamVid datasets illustrate that our method achieves a state-of-the-art trade-off between speed and accuracy. Concretely, our method achieves 78.7% mIoU with 70.0 FPS and 77.8% mIoU with 179.2 FPS on the Cityscapes and CamVid test sets, respectively. The code is available at https://nave.vr3i.com/ and https://github.com/kaigelee/CSFCN . |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1057-7149 1941-0042 1941-0042 |
DOI: | 10.1109/TIP.2023.3318967 |