Boundary conditions for two-sided fractional diffusion

•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any comb...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 376; pp. 1089 - 1107
Main Authors Kelly, James F., Sankaranarayanan, Harish, Meerschaert, Mark M.
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.01.2019
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:•Two-sided fractional diffusion equations are written in conservation form.•Mass-preserving, reflecting boundary conditions for these diffusion equations are a combination of fractional derivatives.•Stable explicit and implicit Euler schemes for two-sided fractional diffusion equations with any combination of absorbing and reflecting boundary conditions are presented.•Closed-form, steady-state solutions are derived.•Numerical experiments verify that the explicit and implicit Euler schemes converge to the analytical steady-state solution for large time. This paper develops appropriate boundary conditions for the two-sided fractional diffusion equation, where the usual second derivative in space is replaced by a weighted average of positive (left) and negative (right) fractional derivatives. Mass preserving, reflecting boundary conditions for two-sided fractional diffusion involve a balance of left and right fractional derivatives at the boundary. Stable, consistent explicit and implicit Euler methods are detailed, and steady state solutions are derived. Steady state solutions for two-sided fractional diffusion equations using both Riemann–Liouville and Caputo flux are computed. For Riemann–Liouville flux and reflecting boundary conditions, the steady-state solution is singular at one or both of the end-points. For Caputo flux and reflecting boundary conditions, the steady-state solution is a constant function. Numerical experiments illustrate the convergence of these numerical methods. Finally, the influence of the reflecting boundary on the steady-state behavior subject to both the Riemann–Liouville and Caputo fluxes is discussed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2018.10.010