Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho‐1/Gpx4 pathway to prevent α‐synuclein‐induced ferroptosis in Parkinson's disease

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α‐synuclein (α‐syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whe...

Full description

Saved in:
Bibliographic Details
Published inJournal of pineal research Vol. 76; no. 2; pp. e12948 - n/a
Main Authors Lv, Qian‐Kun, Tao, Kang‐Xin, Yao, Xiao‐Yu, Pang, Meng‐Zhu, Cao, Bing‐Er, Liu, Chun‐Feng, Wang, Fen
Format Journal Article
LanguageEnglish
Published England 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α‐synuclein (α‐syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α‐syn and ferroptosis in PD. Here, we used α‐syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α‐syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α‐syn PFF‐induced intracellular α‐syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α‐syn‐induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0742-3098
1600-079X
DOI:10.1111/jpi.12948