Expression and site-directed mutagenesis of human protein disulfide isomerase in Escherichia coli. This multifunctional polypeptide has two independently acting catalytic sites for the isomerase activity

Protein disulfide isomerase (PDI, EC 5.3.4.1) is a highly unusual multifunctional polypeptide, being identical to the beta subunit of prolyl 4-hydroxylase, a cellular thyroid hormone binding protein and a component of the microsomal triglyceride transfer protein complex, and highly similar to a poly...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 267; no. 11; pp. 7211 - 7214
Main Authors Vuori, K, Myllylä, R, Pihlajaniemi, T, Kivirikko, K I
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 15.04.1992
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Protein disulfide isomerase (PDI, EC 5.3.4.1) is a highly unusual multifunctional polypeptide, being identical to the beta subunit of prolyl 4-hydroxylase, a cellular thyroid hormone binding protein and a component of the microsomal triglyceride transfer protein complex, and highly similar to a polypeptide acting in vitro as a glycosylation site binding protein. It has two -Cys-Gly-His-Cys- sequences which, it has been proposed, act as catalytic sites for the isomerase activity, but few data have been available to indicate whether one or both of them do indeed act as catalytic sites and whether the two presumed catalytic sites act independently or cooperatively. We report here on the expression of human PDI in Escherichia coli with three different signal sequences. All three polypeptide variants were secreted into the periplasmic space as fully active enzymes. Oligonucleotide-directed mutagenesis was used to convert either one or both of the -Cys-Gly-His-Cys- sequences to -Ser-Gly-His-Cys-. The PDI activity of both polypeptides containing a single modified sequence was about 50% of that of the wild-type polypeptide, whereas the polypeptide with two modified sequences had no isomerase activity. It is thus concluded that both -Cys-Gly-His-Cys- sequences act as catalytic sites for the isomerase activity, and the two catalytic sites appear to operate independently of one another.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)42505-7