Two-Dimensional Warping for One-Dimensional Signals-Conceptual Framework and Application to ECG Processing
We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewis...
Saved in:
Published in | IEEE transactions on signal processing Vol. 62; no. 21; pp. 5577 - 5588 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2014.2354313 |
Cover
Loading…
Abstract | We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms ± 1.05 ms vs. MI patients 5.94 ms ± 5.23 ms (mean ± std), ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals. |
---|---|
AbstractList | We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms plus or minus 1.05 ms vs. MI patients 5.94 ms plus or minus 5.23 ms (mean plus or minus std), p < 0.001 ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals. We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms ± 1.05 ms vs. MI patients 5.94 ms ± 5.23 ms (mean ± std), ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals. We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms [Formula Omitted] 1.05 ms vs. MI patients 5.94 ms [Formula Omitted] 5.23 ms (mean [Formula Omitted] std), [Formula Omitted]). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals. |
Author | Schmidt, Martin Baumert, Mathias Malberg, Hagen Zaunseder, Sebastian Porta, Alberto |
Author_xml | – sequence: 1 givenname: Martin surname: Schmidt fullname: Schmidt, Martin email: martin_schmidt@tu-dresden.de organization: Inst. of Biomed. Eng., Tech. Univ. Dresden, Dresden, Germany – sequence: 2 givenname: Mathias surname: Baumert fullname: Baumert, Mathias email: mathias.baumert@adelaide.edu.au organization: Sch. of Electron. & Electr. Eng., Univ. of Adelaide, Adelaide, SA, Australia – sequence: 3 givenname: Alberto surname: Porta fullname: Porta, Alberto email: alberto.porta@unimi.it organization: Dept. of Biomed. Sci. for Health, Univ. of Milan, Milan, Italy – sequence: 4 givenname: Hagen surname: Malberg fullname: Malberg, Hagen email: hagen.malberg@tu-dresden.de organization: Inst. of Biomed. Eng., Tech. Univ. Dresden, Dresden, Germany – sequence: 5 givenname: Sebastian surname: Zaunseder fullname: Zaunseder, Sebastian email: sebastian.zaunseder@tu-dresden.de organization: Inst. of Biomed. Eng., Tech. Univ. Dresden, Dresden, Germany |
BookMark | eNp9kcFLwzAUxoNMcJveBS8FL146k6ZN2uOY2xQGG2yit5KmryOzS2rSMfzvzdwQ3MHTe7z3-z74-Hqoo40GhG4JHhCCs8fVcjGIMIkHEU1iSugF6pIsJiGOOev4HSc0TFL-foV6zm2wJ-OMddFmtTfhk9qCdspoUQdvwjZKr4PK2GCu4c9vqdZ-uHBktISm3fnTxIot7I39CIQug2HT1EqK1uNBa4LxaBosrJHgnLe8RpeVV8PNafbR62S8Gj2Hs_n0ZTSchZJGcRuWFRfASp7Glcg4k7SsmCyoBKhwWlAuCeA4q1gKUkiIkpKlMs1w4QMVUPjsffRw9G2s-dyBa_OtchLqWmgwO5cTFmWUJRxHHr0_QzdmZw8ZPcUizFkSHQzZkZLWOGehyqVqf0K2Vqg6Jzg_VJD7CvJDBfmpAi_EZ8LGqq2wX_9J7o4SBQC_OEszQnlKvwEP_ZTJ |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1371_journal_pone_0294069 crossref_primary_10_1152_ajpheart_00230_2015 crossref_primary_10_1109_TSP_2019_2951229 crossref_primary_10_26634_jdp_5_1_13525 crossref_primary_10_3390_e16126384 crossref_primary_10_1109_RBME_2017_2757953 crossref_primary_10_1371_journal_pone_0175087 crossref_primary_10_1093_europace_euv405 crossref_primary_10_1016_j_bspc_2015_06_003 crossref_primary_10_1109_TSP_2020_3048256 crossref_primary_10_1088_0967_3334_37_11_1925 crossref_primary_10_1152_ajpheart_00649_2018 crossref_primary_10_1016_j_ppedcard_2024_101756 crossref_primary_10_1038_s41598_024_63656_x crossref_primary_10_1515_bmt_2014_0161 crossref_primary_10_1016_j_chest_2022_09_043 crossref_primary_10_1007_s11517_019_01998_9 crossref_primary_10_1088_1361_6579_ac92be crossref_primary_10_1109_TBME_2016_2614899 crossref_primary_10_1016_j_conbuildmat_2023_134728 crossref_primary_10_1016_j_bspc_2018_03_016 crossref_primary_10_3389_fphys_2016_00216 crossref_primary_10_1016_j_jelectrocard_2016_07_014 crossref_primary_10_3390_s24103151 crossref_primary_10_1088_1361_6579_aa6e95 crossref_primary_10_1515_bmt_2015_0186 crossref_primary_10_3389_fphys_2020_578173 crossref_primary_10_1109_JSAC_2023_3275622 crossref_primary_10_1016_j_bspc_2015_11_011 crossref_primary_10_1371_journal_pone_0184352 |
Cites_doi | 10.1016/0141-5425(86)90026-9 10.1007/BFb0052847 10.1016/j.chroma.2006.03.114 10.1093/eurheartj/ehl367 10.1007/978-3-540-48247-5_1 10.1109/TBME.2010.2097597 10.1093/bioinformatics/btl320 10.1109/10.740882 10.1109/IEMBS.1998.745863 10.1152/ajpheart.00448.2013 10.1161/01.CIR.96.5.1557 10.1109/CIC.1997.648140 10.1109/TITB.2011.2163943 10.1111/jce.12039 10.1109/TBME.2011.2166263 10.1155/2011/935364 10.1109/TBME.2003.821031 10.1007/BF02348129 10.1109/TASSP.1978.1163055 10.1016/S0003-2670(02)00008-9 10.1016/S0021-9673(98)00021-1 10.1002/cem.859 10.1111/j.1542-474X.1997.tb00325.x 10.1109/TSP.2013.2253775 10.1371/journal.pone.0041920 10.1109/LSP.2008.2001558 10.1016/S0020-7373(70)80008-6 10.1007/BF01074755 10.1016/j.cmpb.2007.09.005 10.1109/TIP.2006.887733 10.1161/01.CIR.101.23.e215 10.1137/1.9781611972719.1 10.1007/BF02522855 10.1016/j.patcog.2006.06.007 10.3233/IDA-2007-11508 10.1006/cbmr.1994.1006 10.1007/BF02513285 10.1118/1.3259727 10.1088/0967-3334/33/9/1491 10.1016/j.jelectrocard.2006.03.004 10.1088/0967-3334/34/9/1075 10.1109/TBME.2007.897817 10.1021/ac7024317 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2014.2354313 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 5588 |
ExternalDocumentID | 3620594691 10_1109_TSP_2014_2354313 6891378 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYOK AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH RIG VH1 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c324t-df7ae6d784fa976c3df6cb3ceef08b37c1e049f68ecace25d68c890b144beb543 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Fri Jul 11 07:30:02 EDT 2025 Mon Jun 30 10:19:36 EDT 2025 Thu Apr 24 22:54:10 EDT 2025 Tue Jul 01 02:53:05 EDT 2025 Tue Aug 26 16:50:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/EU.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-df7ae6d784fa976c3df6cb3ceef08b37c1e049f68ecace25d68c890b144beb543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4012-0608 |
PQID | 1662076524 |
PQPubID | 85478 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1629365702 ieee_primary_6891378 crossref_citationtrail_10_1109_TSP_2014_2354313 proquest_journals_1662076524 crossref_primary_10_1109_TSP_2014_2354313 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-Nov.1, 2014-11-00 20141101 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-Nov.1, day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 arzt (ref12) 2008 ref15 ref14 ref10 ref17 ref16 ref19 ref18 vullings (ref8) 1997 zifan (ref25) 2007; 1 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref7 ref4 ref3 ref5 chu s (ref46) 2006 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 salvador (ref11) 2007; 11 ref24 ref26 ref20 jayadevan r (ref6) 2009; 1 ref22 ref21 ref28 ref27 goldberger (ref39) 2000; 101 ref29 berger (ref23) 1996 bousseljot (ref38) 1995 keogh (ref9) 1999 |
References_xml | – ident: ref32 doi: 10.1016/0141-5425(86)90026-9 – volume: 1 start-page: 181 year: 2007 ident: ref25 article-title: Automated segmentation of ECG signals using piecewise derivative dynamic time warping publication-title: Int J Biolog Life Sci – start-page: 275 year: 1997 ident: ref8 publication-title: Advances in Intelligent Data Analysis Reasoning about Data doi: 10.1007/BFb0052847 – ident: ref15 doi: 10.1016/j.chroma.2006.03.114 – ident: ref17 doi: 10.1093/eurheartj/ehl367 – start-page: 1 year: 1999 ident: ref9 publication-title: Principles of Data Mining and Knowledge Discovery doi: 10.1007/978-3-540-48247-5_1 – ident: ref21 doi: 10.1109/TBME.2010.2097597 – ident: ref5 doi: 10.1093/bioinformatics/btl320 – ident: ref28 doi: 10.1109/10.740882 – ident: ref42 doi: 10.1109/IEMBS.1998.745863 – ident: ref18 doi: 10.1152/ajpheart.00448.2013 – ident: ref24 doi: 10.1161/01.CIR.96.5.1557 – ident: ref40 doi: 10.1109/CIC.1997.648140 – ident: ref44 doi: 10.1109/TITB.2011.2163943 – ident: ref19 doi: 10.1111/jce.12039 – ident: ref22 doi: 10.1109/TBME.2011.2166263 – ident: ref29 doi: 10.1155/2011/935364 – ident: ref41 doi: 10.1109/TBME.2003.821031 – ident: ref45 doi: 10.1007/BF02348129 – ident: ref3 doi: 10.1109/TASSP.1978.1163055 – ident: ref16 doi: 10.1016/S0003-2670(02)00008-9 – ident: ref13 doi: 10.1016/S0021-9673(98)00021-1 – ident: ref14 doi: 10.1002/cem.859 – ident: ref34 doi: 10.1111/j.1542-474X.1997.tb00325.x – ident: ref20 doi: 10.1109/TSP.2013.2253775 – ident: ref36 doi: 10.1371/journal.pone.0041920 – ident: ref30 doi: 10.1109/LSP.2008.2001558 – ident: ref2 doi: 10.1016/S0020-7373(70)80008-6 – start-page: 241 year: 2008 ident: ref12 publication-title: Proc Conf ECAI 2008 18th European Conference on Artificial Intelligence – start-page: 317 year: 1995 ident: ref38 article-title: Nutzung der EKG-signaldatenbank CARDIODAT der PTB ber das Internet publication-title: Biomedizinische Technik/Biomed Eng – ident: ref1 doi: 10.1007/BF01074755 – ident: ref43 doi: 10.1016/j.cmpb.2007.09.005 – ident: ref26 doi: 10.1109/TIP.2006.887733 – volume: 101 start-page: 215e year: 2000 ident: ref39 article-title: PhysioBank, PhysioToolkit, PhysioNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref10 doi: 10.1137/1.9781611972719.1 – ident: ref35 doi: 10.1007/BF02522855 – year: 1996 ident: ref23 publication-title: ?Methodology for automated QT variability measurement ? – ident: ref4 doi: 10.1016/j.patcog.2006.06.007 – start-page: 673 year: 2006 ident: ref46 article-title: Efficient rotation invariant retrieval of shapes with applications in medical databases publication-title: Proc 13th IEEE Symp Computer-Based Med Syst (CBMS) – volume: 11 start-page: 561 year: 2007 ident: ref11 article-title: Toward accurate dynamic time warping in linear time and space publication-title: Intell Data Anal doi: 10.3233/IDA-2007-11508 – ident: ref33 doi: 10.1006/cbmr.1994.1006 – ident: ref31 doi: 10.1007/BF02513285 – ident: ref47 doi: 10.1118/1.3259727 – ident: ref7 doi: 10.1088/0967-3334/33/9/1491 – ident: ref37 doi: 10.1016/j.jelectrocard.2006.03.004 – ident: ref27 doi: 10.1088/0967-3334/34/9/1075 – volume: 1 start-page: 52 year: 2009 ident: ref6 article-title: Dynamic time warping based static hand printed signature verification publication-title: Pattern recognition research – ident: ref49 doi: 10.1109/TBME.2007.897817 – ident: ref48 doi: 10.1021/ac7024317 |
SSID | ssj0014496 |
Score | 2.3389773 |
Snippet | We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5577 |
SubjectTerms | Correlation Cost function Diagnostic systems Dynamic time warping ECG Electrocardiography Heart attacks Heuristic algorithms Patients Physiology QT interval QT variability Recording signal processing Signal processing algorithms Similarity Two dimensional two-dimensional warping Vectors Warpage Warping |
Title | Two-Dimensional Warping for One-Dimensional Signals-Conceptual Framework and Application to ECG Processing |
URI | https://ieeexplore.ieee.org/document/6891378 https://www.proquest.com/docview/1662076524 https://www.proquest.com/docview/1629365702 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsFGQkLkh410kcOzlWS5cKqYDUrdhbFDtjxEMJKomQ-PXM5AUFhLhFycSx8tnx58x8MwBP07SyUYy5dFGGUjvtpTPOSjI3QUeh0prFyWevzemFfrVLd3vwfNbCIGIffIZLPux9-VXjO_5VtjLsU7PZPuzTxm3Qas0eA637WlxEFxKZZnY3uSRVvtqev-UYLr2ME1Z-J1eWoL6myh8f4n512dyEs6lfQ1DJp2XXuqX__lvKxv_t-C24MdJMcTyMi9uwh_UduP5L8sFD-Lj91sgXnNx_SMwh3pWXLJ4SRGPFmxqvXDv_8J4TLcv1oHLs6NRmCusSZV2J45-OcNE24mT9UowaBGryLlxsTrbrUzlWXpCeCFYrq2BLNJXNdCiJr_ikCsa7hBbUoDKXWB8h7SyCydCXHuO0MpnPcuUIBYeOXvI9OKibGu-D0ETxvM7LvDReB873rlDlLlhqUuWJWsBqAqPwY1pyro7xuei3JyovCL6C4StG-BbwbL7jy5CS4x-2h4zGbDcCsYCjCe9inLNfi8iYWFmTxnoBT-bLNNvYhVLW2HRsQ_SIo4XiB39v-SFc4-cPasUjOGgvO3xEtKV1j_vx-gMh9us4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErFtgWMxAUJ7zqJYyfHaumyQLcgdSv2FsXOGPFQgtpESP31jPOCAkLconhiWfnszOfMzGeAZ3Fc6CDElJsgQS6NtNwoozmZKycDV0jpi5NXJ2p5Jt9s4s0WvBhrYRCxTT7Dqb9sY_lFZRv_q2ymfExNJ9fgOvn9OOiqtcaYgZTtaVxEGCIeJ3ozBCVFOlufvvdZXHIaRr72O7rihNpTVf74FLf-ZXEHVsPIurSSL9OmNlN7-Zto4_8O_S7c7okmO-xmxj3YwvI-3PpFfnAHPq-_V_yll_fvpDnYh_zcl08xIrLsXYlX2k4_ffRSy3ze1Tk2dGsxJHaxvCzY4c9QOKsrdjR_xfoqBOryAZwtjtbzJe_PXuCWKFbNC6dzVIVOpMuJsdiocMqaiFyqE4mJtA2Q9hZOJWhzi2FcqMQmqTCEgkFDL3kXtsuqxIfAJJE8K9M8zZWVziu-CxSpcZq6FGkkJjAbwMhsL0zuz8f4mrUbFJFmBF_m4ct6-CbwfHziWyfK8Q_bHY_GaNcDMYGDAe-sX7UXWaBUKLSKQzmBp2MzrTcfRMlLrBpvQwTJ5wuFe3_v-QncWK5Xx9nx65O3-3DTj6WrXTyA7fq8wUdEYmrzuJ27PwCLXu6B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Warping+for+One-Dimensional+Signals%E2%80%94Conceptual+Framework+and+Application+to+ECG+Processing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Schmidt%2C+Martin&rft.au=Baumert%2C+Mathias&rft.au=Porta%2C+Alberto&rft.au=Malberg%2C+Hagen&rft.date=2014-11-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=62&rft.issue=21&rft.spage=5577&rft.epage=5588&rft_id=info:doi/10.1109%2FTSP.2014.2354313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2014_2354313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |