Two-Dimensional Warping for One-Dimensional Signals-Conceptual Framework and Application to ECG Processing

We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 21; pp. 5577 - 5588
Main Authors Schmidt, Martin, Baumert, Mathias, Porta, Alberto, Malberg, Hagen, Zaunseder, Sebastian
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2014.2354313

Cover

Loading…
Abstract We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms ± 1.05 ms vs. MI patients 5.94 ms ± 5.23 ms (mean ± std), ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals.
AbstractList We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms plus or minus 1.05 ms vs. MI patients 5.94 ms plus or minus 5.23 ms (mean plus or minus std), p < 0.001 ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals.
We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms ± 1.05 ms vs. MI patients 5.94 ms ± 5.23 ms (mean ± std), ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals.
We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms [Formula Omitted] 1.05 ms vs. MI patients 5.94 ms [Formula Omitted] 5.23 ms (mean [Formula Omitted] std), [Formula Omitted]). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals.
Author Schmidt, Martin
Baumert, Mathias
Malberg, Hagen
Zaunseder, Sebastian
Porta, Alberto
Author_xml – sequence: 1
  givenname: Martin
  surname: Schmidt
  fullname: Schmidt, Martin
  email: martin_schmidt@tu-dresden.de
  organization: Inst. of Biomed. Eng., Tech. Univ. Dresden, Dresden, Germany
– sequence: 2
  givenname: Mathias
  surname: Baumert
  fullname: Baumert, Mathias
  email: mathias.baumert@adelaide.edu.au
  organization: Sch. of Electron. & Electr. Eng., Univ. of Adelaide, Adelaide, SA, Australia
– sequence: 3
  givenname: Alberto
  surname: Porta
  fullname: Porta, Alberto
  email: alberto.porta@unimi.it
  organization: Dept. of Biomed. Sci. for Health, Univ. of Milan, Milan, Italy
– sequence: 4
  givenname: Hagen
  surname: Malberg
  fullname: Malberg, Hagen
  email: hagen.malberg@tu-dresden.de
  organization: Inst. of Biomed. Eng., Tech. Univ. Dresden, Dresden, Germany
– sequence: 5
  givenname: Sebastian
  surname: Zaunseder
  fullname: Zaunseder, Sebastian
  email: sebastian.zaunseder@tu-dresden.de
  organization: Inst. of Biomed. Eng., Tech. Univ. Dresden, Dresden, Germany
BookMark eNp9kcFLwzAUxoNMcJveBS8FL146k6ZN2uOY2xQGG2yit5KmryOzS2rSMfzvzdwQ3MHTe7z3-z74-Hqoo40GhG4JHhCCs8fVcjGIMIkHEU1iSugF6pIsJiGOOev4HSc0TFL-foV6zm2wJ-OMddFmtTfhk9qCdspoUQdvwjZKr4PK2GCu4c9vqdZ-uHBktISm3fnTxIot7I39CIQug2HT1EqK1uNBa4LxaBosrJHgnLe8RpeVV8PNafbR62S8Gj2Hs_n0ZTSchZJGcRuWFRfASp7Glcg4k7SsmCyoBKhwWlAuCeA4q1gKUkiIkpKlMs1w4QMVUPjsffRw9G2s-dyBa_OtchLqWmgwO5cTFmWUJRxHHr0_QzdmZw8ZPcUizFkSHQzZkZLWOGehyqVqf0K2Vqg6Jzg_VJD7CvJDBfmpAi_EZ8LGqq2wX_9J7o4SBQC_OEszQnlKvwEP_ZTJ
CODEN ITPRED
CitedBy_id crossref_primary_10_1371_journal_pone_0294069
crossref_primary_10_1152_ajpheart_00230_2015
crossref_primary_10_1109_TSP_2019_2951229
crossref_primary_10_26634_jdp_5_1_13525
crossref_primary_10_3390_e16126384
crossref_primary_10_1109_RBME_2017_2757953
crossref_primary_10_1371_journal_pone_0175087
crossref_primary_10_1093_europace_euv405
crossref_primary_10_1016_j_bspc_2015_06_003
crossref_primary_10_1109_TSP_2020_3048256
crossref_primary_10_1088_0967_3334_37_11_1925
crossref_primary_10_1152_ajpheart_00649_2018
crossref_primary_10_1016_j_ppedcard_2024_101756
crossref_primary_10_1038_s41598_024_63656_x
crossref_primary_10_1515_bmt_2014_0161
crossref_primary_10_1016_j_chest_2022_09_043
crossref_primary_10_1007_s11517_019_01998_9
crossref_primary_10_1088_1361_6579_ac92be
crossref_primary_10_1109_TBME_2016_2614899
crossref_primary_10_1016_j_conbuildmat_2023_134728
crossref_primary_10_1016_j_bspc_2018_03_016
crossref_primary_10_3389_fphys_2016_00216
crossref_primary_10_1016_j_jelectrocard_2016_07_014
crossref_primary_10_3390_s24103151
crossref_primary_10_1088_1361_6579_aa6e95
crossref_primary_10_1515_bmt_2015_0186
crossref_primary_10_3389_fphys_2020_578173
crossref_primary_10_1109_JSAC_2023_3275622
crossref_primary_10_1016_j_bspc_2015_11_011
crossref_primary_10_1371_journal_pone_0184352
Cites_doi 10.1016/0141-5425(86)90026-9
10.1007/BFb0052847
10.1016/j.chroma.2006.03.114
10.1093/eurheartj/ehl367
10.1007/978-3-540-48247-5_1
10.1109/TBME.2010.2097597
10.1093/bioinformatics/btl320
10.1109/10.740882
10.1109/IEMBS.1998.745863
10.1152/ajpheart.00448.2013
10.1161/01.CIR.96.5.1557
10.1109/CIC.1997.648140
10.1109/TITB.2011.2163943
10.1111/jce.12039
10.1109/TBME.2011.2166263
10.1155/2011/935364
10.1109/TBME.2003.821031
10.1007/BF02348129
10.1109/TASSP.1978.1163055
10.1016/S0003-2670(02)00008-9
10.1016/S0021-9673(98)00021-1
10.1002/cem.859
10.1111/j.1542-474X.1997.tb00325.x
10.1109/TSP.2013.2253775
10.1371/journal.pone.0041920
10.1109/LSP.2008.2001558
10.1016/S0020-7373(70)80008-6
10.1007/BF01074755
10.1016/j.cmpb.2007.09.005
10.1109/TIP.2006.887733
10.1161/01.CIR.101.23.e215
10.1137/1.9781611972719.1
10.1007/BF02522855
10.1016/j.patcog.2006.06.007
10.3233/IDA-2007-11508
10.1006/cbmr.1994.1006
10.1007/BF02513285
10.1118/1.3259727
10.1088/0967-3334/33/9/1491
10.1016/j.jelectrocard.2006.03.004
10.1088/0967-3334/34/9/1075
10.1109/TBME.2007.897817
10.1021/ac7024317
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2014.2354313
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 5588
ExternalDocumentID 3620594691
10_1109_TSP_2014_2354313
6891378
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYOK
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c324t-df7ae6d784fa976c3df6cb3ceef08b37c1e049f68ecace25d68c890b144beb543
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Fri Jul 11 07:30:02 EDT 2025
Mon Jun 30 10:19:36 EDT 2025
Thu Apr 24 22:54:10 EDT 2025
Tue Jul 01 02:53:05 EDT 2025
Tue Aug 26 16:50:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/EU.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-df7ae6d784fa976c3df6cb3ceef08b37c1e049f68ecace25d68c890b144beb543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4012-0608
PQID 1662076524
PQPubID 85478
PageCount 12
ParticipantIDs proquest_miscellaneous_1629365702
ieee_primary_6891378
crossref_citationtrail_10_1109_TSP_2014_2354313
proquest_journals_1662076524
crossref_primary_10_1109_TSP_2014_2354313
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-Nov.1,
2014-11-00
20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-Nov.1,
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
arzt (ref12) 2008
ref15
ref14
ref10
ref17
ref16
ref19
ref18
vullings (ref8) 1997
zifan (ref25) 2007; 1
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref7
ref4
ref3
ref5
chu s (ref46) 2006
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
salvador (ref11) 2007; 11
ref24
ref26
ref20
jayadevan r (ref6) 2009; 1
ref22
ref21
ref28
ref27
goldberger (ref39) 2000; 101
ref29
berger (ref23) 1996
bousseljot (ref38) 1995
keogh (ref9) 1999
References_xml – ident: ref32
  doi: 10.1016/0141-5425(86)90026-9
– volume: 1
  start-page: 181
  year: 2007
  ident: ref25
  article-title: Automated segmentation of ECG signals using piecewise derivative dynamic time warping
  publication-title: Int J Biolog Life Sci
– start-page: 275
  year: 1997
  ident: ref8
  publication-title: Advances in Intelligent Data Analysis Reasoning about Data
  doi: 10.1007/BFb0052847
– ident: ref15
  doi: 10.1016/j.chroma.2006.03.114
– ident: ref17
  doi: 10.1093/eurheartj/ehl367
– start-page: 1
  year: 1999
  ident: ref9
  publication-title: Principles of Data Mining and Knowledge Discovery
  doi: 10.1007/978-3-540-48247-5_1
– ident: ref21
  doi: 10.1109/TBME.2010.2097597
– ident: ref5
  doi: 10.1093/bioinformatics/btl320
– ident: ref28
  doi: 10.1109/10.740882
– ident: ref42
  doi: 10.1109/IEMBS.1998.745863
– ident: ref18
  doi: 10.1152/ajpheart.00448.2013
– ident: ref24
  doi: 10.1161/01.CIR.96.5.1557
– ident: ref40
  doi: 10.1109/CIC.1997.648140
– ident: ref44
  doi: 10.1109/TITB.2011.2163943
– ident: ref19
  doi: 10.1111/jce.12039
– ident: ref22
  doi: 10.1109/TBME.2011.2166263
– ident: ref29
  doi: 10.1155/2011/935364
– ident: ref41
  doi: 10.1109/TBME.2003.821031
– ident: ref45
  doi: 10.1007/BF02348129
– ident: ref3
  doi: 10.1109/TASSP.1978.1163055
– ident: ref16
  doi: 10.1016/S0003-2670(02)00008-9
– ident: ref13
  doi: 10.1016/S0021-9673(98)00021-1
– ident: ref14
  doi: 10.1002/cem.859
– ident: ref34
  doi: 10.1111/j.1542-474X.1997.tb00325.x
– ident: ref20
  doi: 10.1109/TSP.2013.2253775
– ident: ref36
  doi: 10.1371/journal.pone.0041920
– ident: ref30
  doi: 10.1109/LSP.2008.2001558
– ident: ref2
  doi: 10.1016/S0020-7373(70)80008-6
– start-page: 241
  year: 2008
  ident: ref12
  publication-title: Proc Conf ECAI 2008 18th European Conference on Artificial Intelligence
– start-page: 317
  year: 1995
  ident: ref38
  article-title: Nutzung der EKG-signaldatenbank CARDIODAT der PTB ber das Internet
  publication-title: Biomedizinische Technik/Biomed Eng
– ident: ref1
  doi: 10.1007/BF01074755
– ident: ref43
  doi: 10.1016/j.cmpb.2007.09.005
– ident: ref26
  doi: 10.1109/TIP.2006.887733
– volume: 101
  start-page: 215e
  year: 2000
  ident: ref39
  article-title: PhysioBank, PhysioToolkit, PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref10
  doi: 10.1137/1.9781611972719.1
– ident: ref35
  doi: 10.1007/BF02522855
– year: 1996
  ident: ref23
  publication-title: ?Methodology for automated QT variability measurement ?
– ident: ref4
  doi: 10.1016/j.patcog.2006.06.007
– start-page: 673
  year: 2006
  ident: ref46
  article-title: Efficient rotation invariant retrieval of shapes with applications in medical databases
  publication-title: Proc 13th IEEE Symp Computer-Based Med Syst (CBMS)
– volume: 11
  start-page: 561
  year: 2007
  ident: ref11
  article-title: Toward accurate dynamic time warping in linear time and space
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2007-11508
– ident: ref33
  doi: 10.1006/cbmr.1994.1006
– ident: ref31
  doi: 10.1007/BF02513285
– ident: ref47
  doi: 10.1118/1.3259727
– ident: ref7
  doi: 10.1088/0967-3334/33/9/1491
– ident: ref37
  doi: 10.1016/j.jelectrocard.2006.03.004
– ident: ref27
  doi: 10.1088/0967-3334/34/9/1075
– volume: 1
  start-page: 52
  year: 2009
  ident: ref6
  article-title: Dynamic time warping based static hand printed signature verification
  publication-title: Pattern recognition research
– ident: ref49
  doi: 10.1109/TBME.2007.897817
– ident: ref48
  doi: 10.1021/ac7024317
SSID ssj0014496
Score 2.3389773
Snippet We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5577
SubjectTerms Correlation
Cost function
Diagnostic systems
Dynamic time warping
ECG
Electrocardiography
Heart attacks
Heuristic algorithms
Patients
Physiology
QT interval
QT variability
Recording
signal processing
Signal processing algorithms
Similarity
Two dimensional
two-dimensional warping
Vectors
Warpage
Warping
Title Two-Dimensional Warping for One-Dimensional Signals-Conceptual Framework and Application to ECG Processing
URI https://ieeexplore.ieee.org/document/6891378
https://www.proquest.com/docview/1662076524
https://www.proquest.com/docview/1629365702
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsFGQkLkh410kcOzlWS5cKqYDUrdhbFDtjxEMJKomQ-PXM5AUFhLhFycSx8tnx58x8MwBP07SyUYy5dFGGUjvtpTPOSjI3QUeh0prFyWevzemFfrVLd3vwfNbCIGIffIZLPux9-VXjO_5VtjLsU7PZPuzTxm3Qas0eA637WlxEFxKZZnY3uSRVvtqev-UYLr2ME1Z-J1eWoL6myh8f4n512dyEs6lfQ1DJp2XXuqX__lvKxv_t-C24MdJMcTyMi9uwh_UduP5L8sFD-Lj91sgXnNx_SMwh3pWXLJ4SRGPFmxqvXDv_8J4TLcv1oHLs6NRmCusSZV2J45-OcNE24mT9UowaBGryLlxsTrbrUzlWXpCeCFYrq2BLNJXNdCiJr_ikCsa7hBbUoDKXWB8h7SyCydCXHuO0MpnPcuUIBYeOXvI9OKibGu-D0ETxvM7LvDReB873rlDlLlhqUuWJWsBqAqPwY1pyro7xuei3JyovCL6C4StG-BbwbL7jy5CS4x-2h4zGbDcCsYCjCe9inLNfi8iYWFmTxnoBT-bLNNvYhVLW2HRsQ_SIo4XiB39v-SFc4-cPasUjOGgvO3xEtKV1j_vx-gMh9us4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvErFtgWMxAUJ7zqJYyfHaumyQLcgdSv2FsXOGPFQgtpESP31jPOCAkLconhiWfnszOfMzGeAZ3Fc6CDElJsgQS6NtNwoozmZKycDV0jpi5NXJ2p5Jt9s4s0WvBhrYRCxTT7Dqb9sY_lFZRv_q2ymfExNJ9fgOvn9OOiqtcaYgZTtaVxEGCIeJ3ozBCVFOlufvvdZXHIaRr72O7rihNpTVf74FLf-ZXEHVsPIurSSL9OmNlN7-Zto4_8O_S7c7okmO-xmxj3YwvI-3PpFfnAHPq-_V_yll_fvpDnYh_zcl08xIrLsXYlX2k4_ffRSy3ze1Tk2dGsxJHaxvCzY4c9QOKsrdjR_xfoqBOryAZwtjtbzJe_PXuCWKFbNC6dzVIVOpMuJsdiocMqaiFyqE4mJtA2Q9hZOJWhzi2FcqMQmqTCEgkFDL3kXtsuqxIfAJJE8K9M8zZWVziu-CxSpcZq6FGkkJjAbwMhsL0zuz8f4mrUbFJFmBF_m4ct6-CbwfHziWyfK8Q_bHY_GaNcDMYGDAe-sX7UXWaBUKLSKQzmBp2MzrTcfRMlLrBpvQwTJ5wuFe3_v-QncWK5Xx9nx65O3-3DTj6WrXTyA7fq8wUdEYmrzuJ27PwCLXu6B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Dimensional+Warping+for+One-Dimensional+Signals%E2%80%94Conceptual+Framework+and+Application+to+ECG+Processing&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Schmidt%2C+Martin&rft.au=Baumert%2C+Mathias&rft.au=Porta%2C+Alberto&rft.au=Malberg%2C+Hagen&rft.date=2014-11-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=62&rft.issue=21&rft.spage=5577&rft.epage=5588&rft_id=info:doi/10.1109%2FTSP.2014.2354313&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2014_2354313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon