Two-Dimensional Warping for One-Dimensional Signals-Conceptual Framework and Application to ECG Processing
We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewis...
Saved in:
Published in | IEEE transactions on signal processing Vol. 62; no. 21; pp. 5577 - 5588 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a novel method for evaluating the similarity between two 1d patterns. Our method, referred to as two-dimensional signal warping (2DSW), extends the basic ideas of known warping techniques such as dynamic time warping and correlation optimized warping. By employing two-dimensional piecewise stretching 2DSW is able to take into account inhomogeneous variations of shapes. We apply 2DSW to ECG recordings to extract beat-to-beat variability in QT intervals (QTV) that is indicative of ventricular repolarization lability and typically characterised by a low signal-to-noise ratio. Simulation studies show high robustness of our approach in presence of typical ECG artefacts. Comparison of short-term ECG recorded in normal subjects versus patients with myocardial infarction (MI) shows significantly increased QTV in patients (normal subject 2.36 ms ± 1.05 ms vs. MI patients 5.94 ms ± 5.23 ms (mean ± std), ). Evaluation of a standard QT database shows that 2DSW allows highly accurate tracking of QRS-onset and T-end. In conclusion, the two-dimensional warping approach introduced here is able to detect subtle changes in noisy quasi-periodic biomedical signals such as ECG and may have diagnostic potential for measuring repolarization lability in MI patients. In more general terms, the proposed method provides a novel means for morphological characterization of 1d signals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2014.2354313 |