Expression of glutamate transporters in human and rat retina and rat optic nerve

l-Glutamate is the major excitatory transmitter in the vertebrate retina and plays a central role in the transmission of the various retinal neurons. Glutamate is removed from the extracellular space by at least five different glutamate transporters. The cellular distribution of these has been studi...

Full description

Saved in:
Bibliographic Details
Published inHistochemistry and cell biology Vol. 120; no. 3; pp. 199 - 212
Main Authors Kugler, Peter, Beyer, Astrid
Format Journal Article
LanguageEnglish
Published Germany Springer Nature B.V 01.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:l-Glutamate is the major excitatory transmitter in the vertebrate retina and plays a central role in the transmission of the various retinal neurons. Glutamate is removed from the extracellular space by at least five different glutamate transporters. The cellular distribution of these has been studied so far mainly using immunocytochemistry. In the present study non-radioactive in situ hybridisation using complementary RNA probes was applied in order to identify the cell types of rat retina and optic nerve expressing generic GLT1, GLT1 variant (GLT1v or GLT1B), GLAST and EAAC1. The results were compared with immunocytochemical data achieved using affinity-purified antibodies against transporter peptides. In the immunohistochemical studies the human retina was included. The study showed that in the rat retina GLT1v and EAAC1 were coexpressed in various cell types, i.e. photoreceptor, bipolar, horizontal, amacrine, ganglion and Müller cells, whereas GLAST was only detected in Müller cells and astrocytes. In the rat optic nerve GLT1v and EAAC1 were preferentially expressed in oligodendrocytes, whereas GLAST was revealed to be present mainly in astrocytes. Generic GLT1 could not be detected in the retina or optic nerve. The cellular distribution of glutamate transporters (only immunocytochemistry) in the human retina was very similar to that of the rat retina. Remarkable results of our studies were that generic GLT1 was not detectable in the rat (and human) retina and that GLT1v and EAAC1 were demonstrable in most cell types of the retina (including photoreceptor cells and their terminals).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0948-6143
1432-119X
DOI:10.1007/s00418-003-0555-y