PLL-Based Contactless Energy Transfer Analog FSK Demodulator Using High-Efficiency Rectifier

This paper proposes a new phase-locked-loop (PLL)-based inductive coupled contactless energy transfer (CET) analog frequency-shift keying (FSK) demodulator using a high-efficiency RF-to-dc rectifier for biomedical implanted devices. The analog FSK demodulator is composed of a modified CMOS three-sta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 60; no. 1; pp. 280 - 290
Main Authors Hwang, Yuh-Shyan, Hwang, Bo-Han, Lin, Ho-Cheng, Chen, Jiann-Jong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a new phase-locked-loop (PLL)-based inductive coupled contactless energy transfer (CET) analog frequency-shift keying (FSK) demodulator using a high-efficiency RF-to-dc rectifier for biomedical implanted devices. The analog FSK demodulator is composed of a modified CMOS three-stage rectifier, a voltage regulator, an FSK signal generator, and a PLL. The proposed modified single-stage rectifier with both positive and negative output voltages using a PMOS and an NMOS pass transistor, an inverter, and two capacitors has a small active area and can enhance the power conversion efficiency. The proposed RF-to-dc rectifier achieves an efficiency of 64% at 8.4 dBm. The power consumption of the demodulator is as low as 0.76 mW, and the active area is 0.084 mm 2 . The analog FSK demodulator supports a data rate of 100 kb/s to 1 Mb/s. The chip was implemented in a Taiwan Semiconductor Manufacturing Company (TSMC) 0.35- μm double-poly quadruple-metal CMOS technology to verify the proposed CET circuit. Two figures of merit are provided to illustrate the advantages of the proposed architecture.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2011.2181135