Adaptive Electric Vehicle Charging Coordination on Distribution Network

Electric vehicles (EVs) with large battery charging demands may cause detrimental impact on distribution grid stability without EV charging coordination. This paper proposes an on-line adaptive EV charing scheduling (OACS) framework to optimize EV charging schedules and reduce flow limit, voltage ma...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 5; no. 6; pp. 2666 - 2675
Main Authors Lunci Hua, Wang, Jia, Zhou, Chi
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electric vehicles (EVs) with large battery charging demands may cause detrimental impact on distribution grid stability without EV charging coordination. This paper proposes an on-line adaptive EV charing scheduling (OACS) framework to optimize EV charging schedules and reduce flow limit, voltage magnitude limit, 3-phase voltage imbalance limit, and transformer capacity violations. EV user convenience is considered and EV charging cost is optimized. DC power flow based optimizations is proposed for EV charging scheduling approximation and parallel ac power flow verification is used to verify the scheduling results. Incremental feasibility improvement procedure is further proposed to correct the scheduling discrepancy between dc linear model and the ac model. Experiments are performed on a modified IEEE 34 14.7 kV distribution system with different EV penetration levels to demonstrate performance comparisons between different scheduling schemes. The result shows that our proposed OACS framework optimizes the EV charging coordination problem efficiently.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2014.2336623