Recent Developments to the Microwave Tube Simulator Suite

Recent developments to microwave tube simulator suite (MTSS) are reported in this paper. The MTSS is a full-featured tightly integrated software package for microwave tube analysis and design. It includes a commercial grade user interface and three physics simulators. The electron optics simulator i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 61; no. 6; pp. 1735 - 1741
Main Authors Li, Bin, Li, Jian-Qing, Hu, Quan, Hu, Yu-Lu, Xu, Li, Huang, Tao, Jin, Xiao-Lin, Zhu, Xiao-Fang, Yang, Zhong-Hai
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent developments to microwave tube simulator suite (MTSS) are reported in this paper. The MTSS is a full-featured tightly integrated software package for microwave tube analysis and design. It includes a commercial grade user interface and three physics simulators. The electron optics simulator is a finite-element (FE) 2-D and 3-D electrostatic steady-state beam trajectory code that has been used to design beam optics, including electron gun and collector. High-frequency circuit simulator is a full 3-D FE computational electromagnetic code that aims to get the accurate electromagnetic wave character spreading in high-frequency structures, such as dispersion, coupling impedance, and attenuation. Beam wave interaction simulator is a large-signal simulation code for helix traveling wave tubes (TWTs), coupled-cavity TWTs, and klystrons. The first version of MTSS was released in 2007, and all of these three physics simulators and user interface are improved and updated over the past six years. This paper reports on some significant advances to MTSS; new Ribbon style user interface, a lot of component modeling templates, more abundant postprocessing features, parallel version, full 64-bit version, more physics, and computation methods improvement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2014.2307058