A Step-Up Switched-Capacitor Multilevel Inverter With Self-Voltage Balancing

The objective of this paper is to propose a new inverter topology for a multilevel voltage output. This topology is designed based on a switched capacitor (SC) technique, and the number of output levels is determined by the number of SC cells. Only one dc voltage source is needed, and the problem of...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 61; no. 12; pp. 6672 - 6680
Main Authors Yuanmao Ye, Cheng, K. W. E., Junfeng Liu, Kai Ding
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The objective of this paper is to propose a new inverter topology for a multilevel voltage output. This topology is designed based on a switched capacitor (SC) technique, and the number of output levels is determined by the number of SC cells. Only one dc voltage source is needed, and the problem of capacitor voltage balancing is avoided as well. This structure is not only very simple and easy to be extended to a higher level, but also its gate driver circuits are simplified because the number of active switches is reduced. The operational principle of this inverter and the targeted modulation strategies are presented, and power losses are investigated. Finally, the performance of the proposed multilevel inverter is evaluated with the experimental results of an 11-level prototype inverter.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2014.2314052