Hierarchical Connectivity-Centered Clustering for Unsupervised Domain Adaptation on Person Re-Identification

Unsupervised domain adaptation (UDA) on person Re-Identification (ReID) aims to transfer the knowledge from a labeled source domain to an unlabeled target domain. Recent works mainly optimize the ReID models with pseudo labels generated by unsupervised clustering on the target domain. However, the p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; pp. 6715 - 6729
Main Authors Bai, Yan, Wang, Ce, Lou, Yihang, Liu, Jun, Duan, Ling-Yu
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Unsupervised domain adaptation (UDA) on person Re-Identification (ReID) aims to transfer the knowledge from a labeled source domain to an unlabeled target domain. Recent works mainly optimize the ReID models with pseudo labels generated by unsupervised clustering on the target domain. However, the pseudo labels generated by the unsupervised clustering methods are often unreliable, due to the severe intra-person variations and complicated cluster structures in the practical application scenarios. In this work, to handle the complicated cluster structures, we propose a novel learnable Hierarchical Connectivity-Centered (HCC) clustering scheme by Graph Convolutional Networks (GCNs) to generate more reliable pseudo labels. Our HCC scheme learns the complicated cluster structure by hierarchically estimating the connectivity among samples from the vertex level to cluster level in a graph representation, and thereby progressively refines the pseudo labels. Additionally, to handle the intra-person variations in clustering, we propose a novel relation feature for HCC clustering, which exploits the identities from the source domain as references to represent target domain samples. Experiments demonstrate that our method is able to achieve state-of-the art performance on three challenging benchmarks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2021.3094140