Binding and release of cytochrome c in brain mitochondria is influenced by membrane potential and hydrophobic interactions with cardiolipin

Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential delta psi(m), accompanied by detachment of the protein from the inner membrane. In a model...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of membrane biology Vol. 198; no. 1; pp. 43 - 53
Main Authors Piccotti, L, Buratta, M, Giannini, S, Gresele, P, Roberti, R, Corazzi, L
Format Journal Article
LanguageEnglish
Published United States Springer Nature B.V 01.03.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential delta psi(m), accompanied by detachment of the protein from the inner membrane. In a model system of cytochrome c reconstituted in cardiolipin (CL) liposomes, phosphate was used to breach the hydrophilic lipid-protein interactions. About 44% cytochrome c was removable when heart CL (80% 18:2n-6) was employed, whereas the remaining protein accounted for the tightly bound conformation characterized by hydrophobic lipid-protein interactions. Cytochrome c release from brain CL liposomes was higher compared to heart CL, consistent with lower polyunsaturated fatty acid content. The release was even higher with CL extracted from metabolically stressed mitochondria, exhibiting more saturated fatty acid profile compared to control (30% vs. 17%). Therefore, weakening of the hydrophobic interactions due to saturation of CL may account for the observed cytochrome c release from mitochondria following metabolic stress. Moreover, mitochondria enriched with polyunsaturated CL exhibited higher delta psi(m), compared to less unsaturated species, suggesting that CL fatty acid composition influences delta psi(m). Mitochondria incorporated exogenous cytochrome c without protease-sensitive factors or delta psi(m). The internalized protein anchored to the inner membrane without producing swelling, as monitored by forward and side light scattering, but produced delta psi(m) consumption, suggesting recovery of respiratory activity. The delta psi(m) decrease is ascribed to a selected mitochondrial population containing the incorporated cytochrome c.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2631
1432-1424
DOI:10.1007/s00232-004-0654-2