eVAE: Evolutionary Variational Autoencoder

Variational autoencoders (VAEs) are challenged by the imbalance between representation inference and task fitting caused by surrogate loss. To address this issue, existing methods adjust their balance by directly tuning their coefficients. However, these methods suffer from a tradeoff uncertainty, i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 36; no. 2; pp. 3288 - 3299
Main Authors Wu, Zhangkai, Cao, Longbing, Qi, Lei
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2025
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2024.3359275

Cover

Loading…
More Information
Summary:Variational autoencoders (VAEs) are challenged by the imbalance between representation inference and task fitting caused by surrogate loss. To address this issue, existing methods adjust their balance by directly tuning their coefficients. However, these methods suffer from a tradeoff uncertainty, i.e., nondynamic regulation over iterations and inflexible hyperparameters for learning tasks. Accordingly, we make the first attempt to introduce an evolutionary VAE (eVAE), building on the variational information bottleneck (VIB) theory and integrative evolutionary neural learning. eVAE integrates a variational genetic algorithm (VGA) into VAE with variational evolutionary operators, including variational mutation (V-mutation), crossover, and evolution. Its training mechanism synergistically and dynamically addresses and updates the learning tradeoff uncertainty in the evidence lower bound (ELBO) without additional constraints and hyperparameter tuning. Furthermore, eVAE presents an evolutionary paradigm to tune critical factors of VAEs and addresses the premature convergence and random search problem in integrating evolutionary optimization into deep learning. Experiments show that eVAE addresses the KL-vanishing problem for text generation with low reconstruction loss, generates all the disentangled factors with sharp images, and improves image generation quality. eVAE achieves better disentanglement, generation performance, and generation-inference balance than its competitors. Code available at: https://github.com/amasawa/eVAE .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2024.3359275