Research of Single-Event Burnout in Power Planar VDMOSFETs by Localized Carrier Lifetime Control
This paper presents 2-D numerical simulation results of single-event burnout (SEB) in power planar vertical double-diffused MOSFET (VDMOSFET) with localized carrier lifetime control. A low carrier lifetime control region (LCLCR) is introduced to accelerate the recombination rate of the generated hol...
Saved in:
Published in | IEEE transactions on electron devices Vol. 62; no. 1; pp. 143 - 148 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents 2-D numerical simulation results of single-event burnout (SEB) in power planar vertical double-diffused MOSFET (VDMOSFET) with localized carrier lifetime control. A low carrier lifetime control region (LCLCR) is introduced to accelerate the recombination rate of the generated holes caused by an ion's impact. The optimal localized range with LCLCR in epitaxial layer has been investigated. The SEB inhibition mechanism with LCLCR is analyzed and discussed. A VDMOSFET with localized LCLCR can operate like a normal VDMOSFET and can have improved SEB performance effectively. In addition, the leakage current density in breakdown characteristics of VDMOSFET is studied based on the variation of carrier lifetime. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2014.2365817 |