Characterization of Ceramic Dielectrics for Sub-GHz Applications in Nonlinear Transmission Lines

Low loss dielectric materials with high permittivity and nonlinear behavior are essential for use in capacitive nonlinear transmission lines (NLTLs) for RF generation. NLTLs have a great potential to generate soliton waves for high-power microwave applications in mobile defense platforms and satelli...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on plasma science Vol. 42; no. 10; pp. 3274 - 3282
Main Authors Silva Neto, Lauro P., Rossi, Jose Osvaldo, Barroso, Joaquim J., Silva, Ataide R.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low loss dielectric materials with high permittivity and nonlinear behavior are essential for use in capacitive nonlinear transmission lines (NLTLs) for RF generation. NLTLs have a great potential to generate soliton waves for high-power microwave applications in mobile defense platforms and satellite communications. In this paper, the dielectric properties of a piezoelectric capacitor based on lead-zirconate-titanate (PZT) was characterized in a broadband frequency range from 10 MHz to 1 GHz for use in NLTLs. Three commercial ceramic capacitors made of barium titanate (BaTiO 3 ) were also assessed for comparison with the PZT capacitor. The characterization of materials consisted of measuring the relative dielectric constant (real and imaginary parts) as function of the applied voltage and frequency to calculate the loss tangent of the material. The results showed that PZT material has a better performance for use in NLTLs than barium titanate because of its lower losses. As discussed here, however, the use of PZT and barium titanate-based materials in NLTLs are compromised by the self-resonant frequency of the capacitors because of the inherent parasitic inductance associated with the capacitor at high frequencies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0093-3813
1939-9375
DOI:10.1109/TPS.2014.2307921