Pax3 regulates morphogenetic cell behavior in vitro coincident with activation of a PCP/non-canonical Wnt-signaling cascade

Mutations to Pax3 and other Pax family genes in both mice and humans result in numerous tissue-specific morphological defects. Little is known, however, about the cellular and molecular mechanisms by which Pax genes regulate morphogenesis. We previously showed that Pax3 induces cell aggregation and...

Full description

Saved in:
Bibliographic Details
Published inJournal of cell science Vol. 115; no. Pt 3; pp. 531 - 541
Main Authors Wiggan, O'Neil, Hamel, Paul A
Format Journal Article
LanguageEnglish
Published England 01.02.2002
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Mutations to Pax3 and other Pax family genes in both mice and humans result in numerous tissue-specific morphological defects. Little is known, however, about the cellular and molecular mechanisms by which Pax genes regulate morphogenesis. We previously showed that Pax3 induces cell aggregation and a mesenchymal-to-epithelial transition in Saos-2 cells. We show here that Pax3-induced aggregates arise through the formation of distinct structures involving cell rearrangements and cell behaviors resembling those that occur during gastrulation and neurulation known as convergent extension. During these Pax3-induced processes, Dishevelled and Frizzled are localized to the actin cytoskeleton and both proteins coimmunoprecipitate focal adhesion components from detergent-insoluble cell fractions. We show further that these Pax3-induced cell movements are associated with activation of a Wnt-signaling cascade, resulting in induction and activation of c-Jun-N-terminal kinase/stress activated protein kinase (JNK/SAPK). All of these Wnt-signaling factors exhibit altered subcellular distribution in Pax3-expressing cells. In particular, we show the localization of JNK/SAPK to both the nucleus and to cytoplasmic multi-vesicular structures. These data show that Pax3 regulates morphogenetic cell behavior and that regulation of a conserved, planar cell polarity/noncanonical Wnt-signaling cascade entailing JNK activation is a function of Pax3 activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.115.3.531