Event-Triggered Adaptive Antidisturbance Switching Control for Switched Systems With Dynamic Neural Network Disturbance Modeling

In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural networ...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 12; pp. 17688 - 17700
Main Authors Zhao, Ying, Gao, Yuxuan, Sang, Hong, Fu, Jun, Li, Yuzhe
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2024
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2023.3307389

Cover

Loading…
Abstract In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method.
AbstractList In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method.In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method.
In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method.
Author Sang, Hong
Li, Yuzhe
Fu, Jun
Gao, Yuxuan
Zhao, Ying
Author_xml – sequence: 1
  givenname: Ying
  orcidid: 0000-0001-5693-3772
  surname: Zhao
  fullname: Zhao, Ying
  email: yingz@dlmu.edu.cn
  organization: College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Yuxuan
  orcidid: 0000-0002-5103-6690
  surname: Gao
  fullname: Gao, Yuxuan
  email: gaoyuxuan980503@163.com
  organization: College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 3
  givenname: Hong
  orcidid: 0000-0002-7407-5166
  surname: Sang
  fullname: Sang, Hong
  email: sanghong@dlmu.edu.cn
  organization: College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 4
  givenname: Jun
  orcidid: 0000-0003-2196-3669
  surname: Fu
  fullname: Fu, Jun
  email: junfu@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 5
  givenname: Yuzhe
  orcidid: 0000-0001-8645-7201
  surname: Li
  fullname: Li, Yuzhe
  email: yuzheli@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37676801$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFPGzEQhS1EBRT4AwghH3vZ1GtvvN5jFGiLlIZDgtqb5fXOBpddO7W9oNz60-uQUKEemMuMrPc9We99RIfWWUDoIiejPCfV5-V8PluMKKFsxBgpmagO0AnNOc0oE-Lw313-PEbnIfwiaTgZ86I6Qses5CUXJD9Bf26ewMZs6c1qBR4aPGnUOponwBMbTWNCHHytrAa8eDZRPxi7wlNno3cdbp3fvyZusQkR-oB_mPiArzdW9UbjOQxedWnFZ-cf8fUbu--ugS65naEPreoCnO_3Kbr_crOcfstmd19vp5NZphktYiaE1ozUVNU1G4uaKF2QSquGctU2QESbt2PIK8G11lVRA9esrMctp1wopUXJTtGnne_au98DhCh7EzR0nbLghiCp4ClHIghJ0qu9dKh7aOTam175jXxNLQnETqC9C8FDK7WJKpptLsp0Midy25F86UhuO5L7jhJK_0Nf3d-FLneQAYA3AC0oT9_5Cz_Fn_Y
CODEN ITNNAL
CitedBy_id crossref_primary_10_1002_rnc_7740
crossref_primary_10_1007_s11071_024_10057_4
Cites_doi 10.1016/j.isatra.2011.07.010
10.1109/TCYB.2019.2936040
10.1109/tnnls.2022.3183991
10.1080/00207179.2015.1075175
10.2514/1.J061443
10.1109/TNNLS.2016.2531089
10.1109/TCSI.2021.3066633
10.1109/TCYB.2020.3022270
10.1109/tnnls.2022.3201504
10.1109/tnnls.2022.3156287
10.1109/TIE.2019.2958303
10.1109/TAC.2019.2945279
10.1016/S0005-1098(03)00172-9
10.1109/TAC.2018.2853569
10.1109/TCYB.2020.3029889
10.1109/TCSII.2022.3200053
10.1201/b15528
10.1109/TCSII.2020.2970068
10.1109/TAES.2020.3012000
10.1109/TFUZZ.2015.2459755
10.1007/978-1-4614-1171-0
10.1016/j.conengprac.2020.104675
10.1109/TFUZZ.2015.2486811
10.1109/TNSE.2023.3237256
10.1109/TCYB.2022.3163157
10.1109/TSMC.2022.3144337
10.1016/j.neunet.2022.06.039
10.1109/TCSI.2021.3071341
10.1007/978-0-85729-033-5_9
10.1109/TNNLS.2019.2917137
10.3390/app12020684
10.1109/TCYB.2021.3070356
10.1016/j.jfranklin.2020.10.031
10.1109/TCYB.2020.3025148
10.1109/TSMC.2019.2917385
10.1109/TNNLS.2021.3069817
10.1109/TAC.2012.2220443
10.1109/TCYB.2022.3172503
10.1109/TAC.2019.2914416
10.1109/tnnls.2021.3135582
10.1109/TAC.2019.2912517
10.1016/j.automatica.2022.110373
10.1109/TFUZZ.2020.2968877
10.1109/tac.2023.3244151
10.1109/TFUZZ.2022.3181463
10.1109/TSMC.2018.2801284
10.1109/TAC.2017.2705287
10.1109/TFUZZ.2022.3200730
10.1109/tnnls.2022.3141419
10.1109/TAC.2012.2224257
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TNNLS.2023.3307389
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 17700
ExternalDocumentID 37676801
10_1109_TNNLS_2023_3307389
10242601
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018AAA0101603
– fundername: National Natural Science Foundation of China
  grantid: 62003070; 62373072; 61825301; 62203080
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Liaoning Province
  grantid: 2023-BS-073
  funderid: 10.13039/501100005047
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c324t-88cc30b2abb358b0ac409cad26afde08f1f5e1986ccc94be6c37b5f6268aac873
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 05:22:42 EDT 2025
Wed Mar 05 02:44:32 EST 2025
Thu Apr 24 22:51:58 EDT 2025
Tue Jul 01 00:27:53 EDT 2025
Wed Aug 27 01:57:01 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324t-88cc30b2abb358b0ac409cad26afde08f1f5e1986ccc94be6c37b5f6268aac873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7407-5166
0000-0003-2196-3669
0000-0001-8645-7201
0000-0002-5103-6690
0000-0001-5693-3772
PMID 37676801
PQID 2863300800
PQPubID 23479
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2023_3307389
proquest_miscellaneous_2863300800
crossref_primary_10_1109_TNNLS_2023_3307389
ieee_primary_10242601
pubmed_primary_37676801
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref7
  doi: 10.1016/j.isatra.2011.07.010
– ident: ref35
  doi: 10.1109/TCYB.2019.2936040
– ident: ref27
  doi: 10.1109/tnnls.2022.3183991
– ident: ref45
  doi: 10.1080/00207179.2015.1075175
– ident: ref38
  doi: 10.2514/1.J061443
– ident: ref32
  doi: 10.1109/TNNLS.2016.2531089
– ident: ref8
  doi: 10.1109/TCSI.2021.3066633
– ident: ref13
  doi: 10.1109/TCYB.2020.3022270
– ident: ref33
  doi: 10.1109/tnnls.2022.3201504
– ident: ref1
  doi: 10.1109/tnnls.2022.3156287
– ident: ref19
  doi: 10.1109/TIE.2019.2958303
– ident: ref23
  doi: 10.1109/TAC.2019.2945279
– ident: ref29
  doi: 10.1016/S0005-1098(03)00172-9
– ident: ref40
  doi: 10.1109/TAC.2018.2853569
– ident: ref37
  doi: 10.1109/TCYB.2020.3029889
– ident: ref12
  doi: 10.1109/TCSII.2022.3200053
– ident: ref31
  doi: 10.1201/b15528
– ident: ref25
  doi: 10.1109/TCSII.2020.2970068
– ident: ref43
  doi: 10.1109/TAES.2020.3012000
– ident: ref36
  doi: 10.1109/TFUZZ.2015.2459755
– ident: ref50
  doi: 10.1007/978-1-4614-1171-0
– ident: ref16
  doi: 10.1016/j.conengprac.2020.104675
– ident: ref48
  doi: 10.1109/TFUZZ.2015.2486811
– ident: ref21
  doi: 10.1109/TNSE.2023.3237256
– ident: ref5
  doi: 10.1109/TCYB.2022.3163157
– ident: ref15
  doi: 10.1109/TSMC.2022.3144337
– ident: ref11
  doi: 10.1016/j.neunet.2022.06.039
– ident: ref9
  doi: 10.1109/TCSI.2021.3071341
– ident: ref20
  doi: 10.1007/978-0-85729-033-5_9
– ident: ref6
  doi: 10.1109/TNNLS.2019.2917137
– ident: ref30
  doi: 10.3390/app12020684
– ident: ref41
  doi: 10.1109/TCYB.2021.3070356
– ident: ref44
  doi: 10.1016/j.jfranklin.2020.10.031
– ident: ref2
  doi: 10.1109/TCYB.2020.3025148
– ident: ref39
  doi: 10.1109/TSMC.2019.2917385
– ident: ref3
  doi: 10.1109/TNNLS.2021.3069817
– ident: ref14
  doi: 10.1109/TAC.2012.2220443
– ident: ref24
  doi: 10.1109/TCYB.2022.3172503
– ident: ref17
  doi: 10.1109/TAC.2019.2914416
– ident: ref34
  doi: 10.1109/tnnls.2021.3135582
– ident: ref18
  doi: 10.1109/TAC.2019.2912517
– ident: ref22
  doi: 10.1016/j.automatica.2022.110373
– ident: ref46
  doi: 10.1109/TFUZZ.2020.2968877
– ident: ref47
  doi: 10.1109/tac.2023.3244151
– ident: ref49
  doi: 10.1109/TFUZZ.2022.3181463
– ident: ref42
  doi: 10.1109/TSMC.2018.2801284
– ident: ref4
  doi: 10.1109/TAC.2017.2705287
– ident: ref10
  doi: 10.1109/TFUZZ.2022.3200730
– ident: ref26
  doi: 10.1109/tnnls.2022.3141419
– ident: ref28
  doi: 10.1109/TAC.2012.2224257
SSID ssj0000605649
Score 2.4726727
Snippet In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17688
SubjectTerms Adaptation models
Adaptive antidisturbance
Control systems
Disturbance observers
dynamic event-triggered
dynamic neural network
multisource disturbances
Neural networks
Nonlinear dynamical systems
Switched systems
Switches
Title Event-Triggered Adaptive Antidisturbance Switching Control for Switched Systems With Dynamic Neural Network Disturbance Modeling
URI https://ieeexplore.ieee.org/document/10242601
https://www.ncbi.nlm.nih.gov/pubmed/37676801
https://www.proquest.com/docview/2863300800
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJy5tgbZsC8hI3FDSfDrOcdUPVQhy6VbsLbLHDqyAbFUSVe2Jn86M7awqpCJuUWQ7ieY5nrFn3mPsfZZUlZFdGVVaYYCidRfpooZIVJnFeELWlaH9js-NuLgqPi7LZShWd7Uw1lqXfGZjunRn-WYNI22V4QynBYWqtZ5i5OaLtTYbKgk65sK5u1kqsijLq-VUJJPUx4um-XQZk1Z4nBOsJdGFEpOJkEEPZlqTnMjK4_6mW3fOd1gzvbFPN_kej4OO4f4vMsf__qRdth08UD73kHnOntj-BduZ1B14mOwv2e8zSoWMFhi-fyVBTz436pp-jnzeDyuD8BhvNGGGX96uBpeSyU984jtHTzjcxX6BFJ1_WQ3f-Oldr36ugBMpCL5F47PQ-emD4UiejYrk99jV-dni5CIKeg0RoFs2RFIC5InOlNZ5KXWiAINHUCYTqjM2kV3alTatpQCAutBWQF7pssOQSioFssr32Va_7u0rxk2ngKj5jDBdoYSSOYBJE1uURtXGiBlLJ4u1EMjMSVPjR-uCmqRuncFbMngbDD5jHzZ9rj2Vxz9b75G1HrT0hpqxdxMyWpyJdLyiersef7WZFNiXPPAZO_CQ2fSekHb4yKhH7Bk-vPB5Mq_Z1nAz2jfo7Qz6rUP5H8-k-4w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcoAL5VFgeRqJG0rI03GOqz60wDaXbsXeInvswArIViURghM_HY_trCqkIm5RZFuOZhx_Y898H8DrLKkqLboyqpS0AYpSXaSKGiNeZcbGE6KuNJ13nDZ8cV68X5frUKzuamGMMS75zMT06O7y9RZHOiqzK5w2FKrWullSNa4v19odqSQWmnMHeLOUZ1GWV-upTCap366aZnkWk1p4nJNjCyIMJS4TLoIizLQrOZmV6xGn23lO9qGZ5uwTTr7E46Bi_PUXneN_f9RduBMwKJt7p7kHN0x_H_YnfQcWlvsD-H1MyZDRygbwn0jSk821vKDfI5v3w0ZbBxkvFXkNO_uxGVxSJjv0qe_MYuHw1vYLtOjs42b4zI5-9vLbBhnRgthZND4PnR1dGY4E2qhM_gDOT45Xh4soKDZEaIHZEAmBmCcqk0rlpVCJRBs-otQZl502iejSrjRpLTgi1oUyHPNKlZ0NqoSUKKr8Iez12948BqY7iUTOp7nuCsmlyBF1mpii1LLWms8gnSzWYqAzJ1WNr60La5K6dQZvyeBtMPgM3uz6XHgyj3-2PiBrXWnpDTWDV5NntHYt0gWL7M12_N5mgtu-hMFn8Mi7zK735GlPrhn1JdxarE6X7fJd8-Ep3LYTKXzWzDPYGy5H89xin0G9cB7_Bwzj_tQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Adaptive+Antidisturbance+Switching+Control+for+Switched+Systems+With+Dynamic+Neural+Network+Disturbance+Modeling&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Ying&rft.au=Gao%2C+Yuxuan&rft.au=Sang%2C+Hong&rft.au=Fu%2C+Jun&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=35&rft.issue=12&rft.spage=17688&rft.epage=17700&rft_id=info:doi/10.1109%2FTNNLS.2023.3307389&rft_id=info%3Apmid%2F37676801&rft.externalDocID=10242601
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon