Event-Triggered Adaptive Antidisturbance Switching Control for Switched Systems With Dynamic Neural Network Disturbance Modeling
In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural networ...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 35; no. 12; pp. 17688 - 17700 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 2162-2388 |
DOI | 10.1109/TNNLS.2023.3307389 |
Cover
Loading…
Abstract | In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method. |
---|---|
AbstractList | In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method.In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method. In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource disturbances. The disturbances are divided into two categories: the available unmodeled disturbance and the unavailable dynamic neural network modeled disturbance. First, a dynamic ET criterion is set based on the system state. Then, a novel dynamic ETA disturbance estimator is introduced to observe the modeled disturbance. Furthermore, according to the ET rule and adaptive disturbance observer, a switched controller is designed. Next, under the controller and switching criterion with the average dwell time limitation, sufficient conditions are given to force the switched systems to realize multisource disturbance suppression (DS), trajectory tracking, and communication resource (CR) saving simultaneously. Meanwhile, the Zeno phenomenon may be caused by the ET rule being excluded. In addition, the presented ETAAD approach is also applicable to the nonswitched systems case. Finally, a simulation case is given to validate the effectiveness of the dynamic ETAAD switching control method. |
Author | Sang, Hong Li, Yuzhe Fu, Jun Gao, Yuxuan Zhao, Ying |
Author_xml | – sequence: 1 givenname: Ying orcidid: 0000-0001-5693-3772 surname: Zhao fullname: Zhao, Ying email: yingz@dlmu.edu.cn organization: College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Yuxuan orcidid: 0000-0002-5103-6690 surname: Gao fullname: Gao, Yuxuan email: gaoyuxuan980503@163.com organization: College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 3 givenname: Hong orcidid: 0000-0002-7407-5166 surname: Sang fullname: Sang, Hong email: sanghong@dlmu.edu.cn organization: College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 4 givenname: Jun orcidid: 0000-0003-2196-3669 surname: Fu fullname: Fu, Jun email: junfu@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China – sequence: 5 givenname: Yuzhe orcidid: 0000-0001-8645-7201 surname: Li fullname: Li, Yuzhe email: yuzheli@mail.neu.edu.cn organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37676801$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFPGzEQhS1EBRT4AwghH3vZ1GtvvN5jFGiLlIZDgtqb5fXOBpddO7W9oNz60-uQUKEemMuMrPc9We99RIfWWUDoIiejPCfV5-V8PluMKKFsxBgpmagO0AnNOc0oE-Lw313-PEbnIfwiaTgZ86I6Qses5CUXJD9Bf26ewMZs6c1qBR4aPGnUOponwBMbTWNCHHytrAa8eDZRPxi7wlNno3cdbp3fvyZusQkR-oB_mPiArzdW9UbjOQxedWnFZ-cf8fUbu--ugS65naEPreoCnO_3Kbr_crOcfstmd19vp5NZphktYiaE1ozUVNU1G4uaKF2QSquGctU2QESbt2PIK8G11lVRA9esrMctp1wopUXJTtGnne_au98DhCh7EzR0nbLghiCp4ClHIghJ0qu9dKh7aOTam175jXxNLQnETqC9C8FDK7WJKpptLsp0Midy25F86UhuO5L7jhJK_0Nf3d-FLneQAYA3AC0oT9_5Cz_Fn_Y |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1002_rnc_7740 crossref_primary_10_1007_s11071_024_10057_4 |
Cites_doi | 10.1016/j.isatra.2011.07.010 10.1109/TCYB.2019.2936040 10.1109/tnnls.2022.3183991 10.1080/00207179.2015.1075175 10.2514/1.J061443 10.1109/TNNLS.2016.2531089 10.1109/TCSI.2021.3066633 10.1109/TCYB.2020.3022270 10.1109/tnnls.2022.3201504 10.1109/tnnls.2022.3156287 10.1109/TIE.2019.2958303 10.1109/TAC.2019.2945279 10.1016/S0005-1098(03)00172-9 10.1109/TAC.2018.2853569 10.1109/TCYB.2020.3029889 10.1109/TCSII.2022.3200053 10.1201/b15528 10.1109/TCSII.2020.2970068 10.1109/TAES.2020.3012000 10.1109/TFUZZ.2015.2459755 10.1007/978-1-4614-1171-0 10.1016/j.conengprac.2020.104675 10.1109/TFUZZ.2015.2486811 10.1109/TNSE.2023.3237256 10.1109/TCYB.2022.3163157 10.1109/TSMC.2022.3144337 10.1016/j.neunet.2022.06.039 10.1109/TCSI.2021.3071341 10.1007/978-0-85729-033-5_9 10.1109/TNNLS.2019.2917137 10.3390/app12020684 10.1109/TCYB.2021.3070356 10.1016/j.jfranklin.2020.10.031 10.1109/TCYB.2020.3025148 10.1109/TSMC.2019.2917385 10.1109/TNNLS.2021.3069817 10.1109/TAC.2012.2220443 10.1109/TCYB.2022.3172503 10.1109/TAC.2019.2914416 10.1109/tnnls.2021.3135582 10.1109/TAC.2019.2912517 10.1016/j.automatica.2022.110373 10.1109/TFUZZ.2020.2968877 10.1109/tac.2023.3244151 10.1109/TFUZZ.2022.3181463 10.1109/TSMC.2018.2801284 10.1109/TAC.2017.2705287 10.1109/TFUZZ.2022.3200730 10.1109/tnnls.2022.3141419 10.1109/TAC.2012.2224257 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TNNLS.2023.3307389 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 17700 |
ExternalDocumentID | 37676801 10_1109_TNNLS_2023_3307389 10242601 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018AAA0101603 – fundername: National Natural Science Foundation of China grantid: 62003070; 62373072; 61825301; 62203080 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Liaoning Province grantid: 2023-BS-073 funderid: 10.13039/501100005047 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c324t-88cc30b2abb358b0ac409cad26afde08f1f5e1986ccc94be6c37b5f6268aac873 |
IEDL.DBID | RIE |
ISSN | 2162-237X 2162-2388 |
IngestDate | Fri Jul 11 05:22:42 EDT 2025 Wed Mar 05 02:44:32 EST 2025 Thu Apr 24 22:51:58 EDT 2025 Tue Jul 01 00:27:53 EDT 2025 Wed Aug 27 01:57:01 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c324t-88cc30b2abb358b0ac409cad26afde08f1f5e1986ccc94be6c37b5f6268aac873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7407-5166 0000-0003-2196-3669 0000-0001-8645-7201 0000-0002-5103-6690 0000-0001-5693-3772 |
PMID | 37676801 |
PQID | 2863300800 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TNNLS_2023_3307389 proquest_miscellaneous_2863300800 crossref_primary_10_1109_TNNLS_2023_3307389 ieee_primary_10242601 pubmed_primary_37676801 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
References_xml | – ident: ref7 doi: 10.1016/j.isatra.2011.07.010 – ident: ref35 doi: 10.1109/TCYB.2019.2936040 – ident: ref27 doi: 10.1109/tnnls.2022.3183991 – ident: ref45 doi: 10.1080/00207179.2015.1075175 – ident: ref38 doi: 10.2514/1.J061443 – ident: ref32 doi: 10.1109/TNNLS.2016.2531089 – ident: ref8 doi: 10.1109/TCSI.2021.3066633 – ident: ref13 doi: 10.1109/TCYB.2020.3022270 – ident: ref33 doi: 10.1109/tnnls.2022.3201504 – ident: ref1 doi: 10.1109/tnnls.2022.3156287 – ident: ref19 doi: 10.1109/TIE.2019.2958303 – ident: ref23 doi: 10.1109/TAC.2019.2945279 – ident: ref29 doi: 10.1016/S0005-1098(03)00172-9 – ident: ref40 doi: 10.1109/TAC.2018.2853569 – ident: ref37 doi: 10.1109/TCYB.2020.3029889 – ident: ref12 doi: 10.1109/TCSII.2022.3200053 – ident: ref31 doi: 10.1201/b15528 – ident: ref25 doi: 10.1109/TCSII.2020.2970068 – ident: ref43 doi: 10.1109/TAES.2020.3012000 – ident: ref36 doi: 10.1109/TFUZZ.2015.2459755 – ident: ref50 doi: 10.1007/978-1-4614-1171-0 – ident: ref16 doi: 10.1016/j.conengprac.2020.104675 – ident: ref48 doi: 10.1109/TFUZZ.2015.2486811 – ident: ref21 doi: 10.1109/TNSE.2023.3237256 – ident: ref5 doi: 10.1109/TCYB.2022.3163157 – ident: ref15 doi: 10.1109/TSMC.2022.3144337 – ident: ref11 doi: 10.1016/j.neunet.2022.06.039 – ident: ref9 doi: 10.1109/TCSI.2021.3071341 – ident: ref20 doi: 10.1007/978-0-85729-033-5_9 – ident: ref6 doi: 10.1109/TNNLS.2019.2917137 – ident: ref30 doi: 10.3390/app12020684 – ident: ref41 doi: 10.1109/TCYB.2021.3070356 – ident: ref44 doi: 10.1016/j.jfranklin.2020.10.031 – ident: ref2 doi: 10.1109/TCYB.2020.3025148 – ident: ref39 doi: 10.1109/TSMC.2019.2917385 – ident: ref3 doi: 10.1109/TNNLS.2021.3069817 – ident: ref14 doi: 10.1109/TAC.2012.2220443 – ident: ref24 doi: 10.1109/TCYB.2022.3172503 – ident: ref17 doi: 10.1109/TAC.2019.2914416 – ident: ref34 doi: 10.1109/tnnls.2021.3135582 – ident: ref18 doi: 10.1109/TAC.2019.2912517 – ident: ref22 doi: 10.1016/j.automatica.2022.110373 – ident: ref46 doi: 10.1109/TFUZZ.2020.2968877 – ident: ref47 doi: 10.1109/tac.2023.3244151 – ident: ref49 doi: 10.1109/TFUZZ.2022.3181463 – ident: ref42 doi: 10.1109/TSMC.2018.2801284 – ident: ref4 doi: 10.1109/TAC.2017.2705287 – ident: ref10 doi: 10.1109/TFUZZ.2022.3200730 – ident: ref26 doi: 10.1109/tnnls.2022.3141419 – ident: ref28 doi: 10.1109/TAC.2012.2224257 |
SSID | ssj0000605649 |
Score | 2.4726727 |
Snippet | In this article, a dynamic event-triggered adaptive antidisturbance (ETAAD) switching control strategy is proposed for switched systems subject to multisource... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17688 |
SubjectTerms | Adaptation models Adaptive antidisturbance Control systems Disturbance observers dynamic event-triggered dynamic neural network multisource disturbances Neural networks Nonlinear dynamical systems Switched systems Switches |
Title | Event-Triggered Adaptive Antidisturbance Switching Control for Switched Systems With Dynamic Neural Network Disturbance Modeling |
URI | https://ieeexplore.ieee.org/document/10242601 https://www.ncbi.nlm.nih.gov/pubmed/37676801 https://www.proquest.com/docview/2863300800 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJy5tgbZsC8hI3FDSfDrOcdUPVQhy6VbsLbLHDqyAbFUSVe2Jn86M7awqpCJuUWQ7ieY5nrFn3mPsfZZUlZFdGVVaYYCidRfpooZIVJnFeELWlaH9js-NuLgqPi7LZShWd7Uw1lqXfGZjunRn-WYNI22V4QynBYWqtZ5i5OaLtTYbKgk65sK5u1kqsijLq-VUJJPUx4um-XQZk1Z4nBOsJdGFEpOJkEEPZlqTnMjK4_6mW3fOd1gzvbFPN_kej4OO4f4vMsf__qRdth08UD73kHnOntj-BduZ1B14mOwv2e8zSoWMFhi-fyVBTz436pp-jnzeDyuD8BhvNGGGX96uBpeSyU984jtHTzjcxX6BFJ1_WQ3f-Oldr36ugBMpCL5F47PQ-emD4UiejYrk99jV-dni5CIKeg0RoFs2RFIC5InOlNZ5KXWiAINHUCYTqjM2kV3alTatpQCAutBWQF7pssOQSioFssr32Va_7u0rxk2ngKj5jDBdoYSSOYBJE1uURtXGiBlLJ4u1EMjMSVPjR-uCmqRuncFbMngbDD5jHzZ9rj2Vxz9b75G1HrT0hpqxdxMyWpyJdLyiersef7WZFNiXPPAZO_CQ2fSekHb4yKhH7Bk-vPB5Mq_Z1nAz2jfo7Qz6rUP5H8-k-4w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcoAL5VFgeRqJG0rI03GOqz60wDaXbsXeInvswArIViURghM_HY_trCqkIm5RZFuOZhx_Y898H8DrLKkqLboyqpS0AYpSXaSKGiNeZcbGE6KuNJ13nDZ8cV68X5frUKzuamGMMS75zMT06O7y9RZHOiqzK5w2FKrWullSNa4v19odqSQWmnMHeLOUZ1GWV-upTCap366aZnkWk1p4nJNjCyIMJS4TLoIizLQrOZmV6xGn23lO9qGZ5uwTTr7E46Bi_PUXneN_f9RduBMwKJt7p7kHN0x_H_YnfQcWlvsD-H1MyZDRygbwn0jSk821vKDfI5v3w0ZbBxkvFXkNO_uxGVxSJjv0qe_MYuHw1vYLtOjs42b4zI5-9vLbBhnRgthZND4PnR1dGY4E2qhM_gDOT45Xh4soKDZEaIHZEAmBmCcqk0rlpVCJRBs-otQZl502iejSrjRpLTgi1oUyHPNKlZ0NqoSUKKr8Iez12948BqY7iUTOp7nuCsmlyBF1mpii1LLWms8gnSzWYqAzJ1WNr60La5K6dQZvyeBtMPgM3uz6XHgyj3-2PiBrXWnpDTWDV5NntHYt0gWL7M12_N5mgtu-hMFn8Mi7zK735GlPrhn1JdxarE6X7fJd8-Ep3LYTKXzWzDPYGy5H89xin0G9cB7_Bwzj_tQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Event-Triggered+Adaptive+Antidisturbance+Switching+Control+for+Switched+Systems+With+Dynamic+Neural+Network+Disturbance+Modeling&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhao%2C+Ying&rft.au=Gao%2C+Yuxuan&rft.au=Sang%2C+Hong&rft.au=Fu%2C+Jun&rft.date=2024-12-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=35&rft.issue=12&rft.spage=17688&rft.epage=17700&rft_id=info:doi/10.1109%2FTNNLS.2023.3307389&rft_id=info%3Apmid%2F37676801&rft.externalDocID=10242601 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |