Adaptive Fault-Tolerant Tracking Control for Linear and Lipschitz Nonlinear Multi-Agent Systems

This paper considers the problem of fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems subject to actuator faults and the leader's bounded unknown input. The communication topology is the undirected subgraph with directed connections between the leader and th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 62; no. 6; pp. 3923 - 3931
Main Authors Zuo, Zhiqiang, Zhang, Jun, Wang, Yijing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers the problem of fault-tolerant tracking control for linear and Lipschitz nonlinear multi-agent systems subject to actuator faults and the leader's bounded unknown input. The communication topology is the undirected subgraph with directed connections between the leader and the followers. Based on the relative states of neighbors and a general actuator fault model, an adaptive fault-tolerant control protocol is proposed to compensate for the failure effects on consensus tracking where the feedback matrices update the parameters by the online estimation of actuator faults. The criteria of reaching consensus tracking despite the actuator faults for both linear and Lipschitz nonlinear agents are derived, respectively. Finally, two examples are included to illustrate the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2014.2367034