Planting Structure Adjustment and Layout Optimization of Feed Grain and Food Grain in China Based on Productive Potentials

Increasing feed grain supply, particularly domestic supply, is intended to guarantee feed grain security and, as a result, food security. Based on the Global Agro-Ecological Zones (GAEZ) model, the potential yield and actual yield of feed and food grain in China were estimated. According to the theo...

Full description

Saved in:
Bibliographic Details
Published inLand (Basel) Vol. 12; no. 1; p. 45
Main Author Li, Tingting
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Increasing feed grain supply, particularly domestic supply, is intended to guarantee feed grain security and, as a result, food security. Based on the Global Agro-Ecological Zones (GAEZ) model, the potential yield and actual yield of feed and food grain in China were estimated. According to the theory of factor endowment, the yield potential development coefficient and the yield efficiency advantage index were then constructed to determine whether the current spatial layout of feed grain is reasonable and how it could be adjusted. The results showed that: (1) There was an imbalance in feed crops production: yield loss in high-potential regions and excessive development in low-potential regions. The imbalances lead to a mismatch between feed production and resource endowment which causes productivity losses and ecological risks. (2) There was considerable potential for increasing the feed grain yield on the Northeast China Plain, the Loess Plateau and in the northern arid and semiarid region. The soybean yield can be increased by about 25%, and the maize yield can be increased by even more. (3) The feed grain should be planted in regions with sufficient potential yield but insufficient actual yield; 26.42% of China’s soybeans and 34.74% of its maize were planted in these regions. (4) Some 16.69% and 15.65% of wheat and rice planting areas could be adjusted to soybeans, respectively; 20.76% and 21.04% of wheat and rice planting areas could be adjusted to maize, respectively. Through agricultural technology research and development, infrastructure support, comprehensive planning design and policy design, the yield potentials of feed grain can be realized. This will redress the imbalance wherein a food grain surplus and a feed grain shortage coexist.
ISSN:2073-445X
2073-445X
DOI:10.3390/land12010045