A Novel Decomposed Optical Architecture for Satellite Terrestrial Network Edge Computing
Aiming at providing a high-performance terrestrial network for edge computing in satellite networks, we experimentally demonstrate a high bandwidth and low latency decomposed optical computing architecture based on distributed Nanoseconds Optical Switches (NOS). Experimental validation of the decomp...
Saved in:
Published in | Mathematics (Basel) Vol. 10; no. 14; p. 2515 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aiming at providing a high-performance terrestrial network for edge computing in satellite networks, we experimentally demonstrate a high bandwidth and low latency decomposed optical computing architecture based on distributed Nanoseconds Optical Switches (NOS). Experimental validation of the decomposed computing network prototype employs a four-port NOS to interconnect four processor/memory cubes. The SOA-based optical gates provide an ON/OFF ratio greater than 60 dB, enabling none-error transmission at a Bit Error Rate (BER) of 1 × 10−9. An end-to-end access latency of 122.3 ns and zero packet loss are obtained in the experimental assessment. Scalability and physical performance considering signal impairments when increasing the NOS port count are also investigated. An output OSNR of up to 30.5 dB and an none-error transmission with 1.5 dB penalty is obtained when scaling the NOS port count to 64. Moreover, exploiting the experimentally measured parameters, the network performance of NOS-based decomposed computing architecture is numerically assessed under larger network scales. The results indicate that, under a 4096-cube network scale, the NOS-based decomposed computing architecture achieves 148.5 ns end-to-end latency inside the same rack and zero packet loss at a link bandwidth of 40 Gb/s. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math10142515 |