A Resilient Framework for Fault-Tolerant Operation of Modular Multilevel Converters
This paper presents a resilient framework for fault-tolerant operation in modular multilevel converters (MMCs) to facilitate normal operation under internal and external fault conditions. This framework is realized by designing and implementing a supervisory algorithm and a postfault restoration sch...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 63; no. 5; pp. 2669 - 2678 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents a resilient framework for fault-tolerant operation in modular multilevel converters (MMCs) to facilitate normal operation under internal and external fault conditions. This framework is realized by designing and implementing a supervisory algorithm and a postfault restoration scheme. The supervisory algorithm includes monitoring and decision-making units to detect and identify faults by analyzing the circulating current and submodule capacitor voltages in a very short time. The postfault restoration scheme is proposed to immediately replace the faulty submodule with the redundant healthy one. The restoration is achieved by virtue of a multilevel modular capacitor-clamped dc/dc converter (MMCCC), which is redundantly aggregated to each arm of the MMC. This design effectively guarantees smooth mode transition and handles the failure of multiple submodules in a short time interval. In addition, a modified modulation scheme is presented to ensure submodule capacitor voltage balancing of the MMC without implementing any additional hardware. Fast fault identification, a fully modular structure, and robust postfault restoration are the main features of the proposed framework. Digital time-domain simulation studies are conducted on a 21-level MMC to confirm the effectiveness and resilience of the proposed fault-tolerant framework during internal and external faults. Furthermore, the proposed framework is implemented in the FPGA-based RT-LAB real-time simulator platform to validate its resilience in a hardware-in-the-loop setup. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2016.2516968 |