Pixel-wise Wasserstein Autoencoder for Highly Generative Dehazing

We propose a highly generative dehazing method based on pixel-wise Wasserstein autoencoders. In contrast to existing dehazing methods based on generative adversarial networks, our method can produce a variety of dehazed images with different styles. It significantly improves the dehazing accuracy vi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 30; p. 1
Main Authors Kim, Guisik, Park, Sung Woo, Kwon, Junseok
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a highly generative dehazing method based on pixel-wise Wasserstein autoencoders. In contrast to existing dehazing methods based on generative adversarial networks, our method can produce a variety of dehazed images with different styles. It significantly improves the dehazing accuracy via pixel-wise matching from hazy to dehazed images through 2-dimensional latent tensors of the Wasserstein autoencoder. In addition, we present an advanced feature fusion technique to deliver rich information to the latent space. For style transfer, we introduce a mapping function that transforms existing latent spaces to new ones. Thus, our method can produce highly generative haze-free images with various tones, illuminations, and moods, which induces several interesting applications, including low-light enhancement, daytime dehazing, nighttime dehazing, and underwater image enhancement. Experimental results demonstrate that our method quantitatively outperforms existing state-of-the-art methods for synthetic and real-world datasets, and simultaneously generates highly generative haze-free images, which are qualitatively diverse.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2021.3084743