Line-scanning detection instrument for photonic crystal enhanced fluorescence
A laser line-scanning instrument was developed to optimize the near-field enhancement capability of a one-dimensional photonic crystal (PC) for excitation of surface-bound fluorophores. The excitation laser beam is shaped into an 8 μm × 1 mm line that is focused along the direction of the PC grating...
Saved in:
Published in | Optics letters Vol. 37; no. 13; p. 2565 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2012
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | A laser line-scanning instrument was developed to optimize the near-field enhancement capability of a one-dimensional photonic crystal (PC) for excitation of surface-bound fluorophores. The excitation laser beam is shaped into an 8 μm × 1 mm line that is focused along the direction of the PC grating, while remaining collimated perpendicular to the grating. Such a beam configuration offers high excitation power density while simultaneously providing high resonant coupling efficiency from the laser to the PC surface. Using a panel of 21 immunofluorescence assays on the PC surface in a microarray format, the approach achieves an enhancement factor as high as 90-fold between on-resonance and off-resonance illumination. The instrument provides a capability for sensitive and inexpensive analysis of cancer biomarkers in clinical applications. |
---|---|
ISSN: | 1539-4794 |
DOI: | 10.1364/OL.37.002565 |