Pulsed-Latch Aware Placement for Timing-Integrity Optimization

Utilizing pulsed-latches in circuit designs is one emerging solution to timing improvements. Pulsed-latches, driven by a brief clock signal generated from pulse generators, possess superior design parameters over flip-flops. If the pulse generator and pulsed-latches are not placed properly, however,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computer-aided design of integrated circuits and systems Vol. 30; no. 12; pp. 1856 - 1869
Main Authors Chuang, Yi-Lin, Kim, Sangmin, Shin, Youngsoo, Chang, Yao-Wen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Utilizing pulsed-latches in circuit designs is one emerging solution to timing improvements. Pulsed-latches, driven by a brief clock signal generated from pulse generators, possess superior design parameters over flip-flops. If the pulse generator and pulsed-latches are not placed properly, however, pulse-width degradations at pulsed-latches and thus timing violations might occur. In this paper, we present a unified placement framework for pulsed-latches to maintain the timing integrity. Our new placer has the following distinguished features: 1) a multilevel analytical placement framework to effectively prevent the potential pulse-width distortion problem; 2) a physical-location aware pulse-generator insertion algorithm to identify each desired group of a pulse generator and latches; and 3) a new optimization gradient for global placement to consider the impact of load capacitance of generators. Experimental results show that our placement flow can effectively consider pulse-width integrity and thus achieve much smaller total/worst negative slacks with marginal wirelength overheads, compared to a leading commercial and an academic placement flows.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2011.2165717