Optimal Stochastic Approximation Algorithms for Strongly Convex Stochastic Composite Optimization, II: Shrinking Procedures and Optimal Algorithms
In this paper we study new stochastic approximation (SA) type algorithms, namely, the accelerated SA (AC-SA), for solving strongly convex stochastic composite optimization (SCO) problems. Specifically, by introducing a domain shrinking procedure, we significantly improve the large-deviation results...
Saved in:
Published in | SIAM journal on optimization Vol. 23; no. 4; pp. 2061 - 2089 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we study new stochastic approximation (SA) type algorithms, namely, the accelerated SA (AC-SA), for solving strongly convex stochastic composite optimization (SCO) problems. Specifically, by introducing a domain shrinking procedure, we significantly improve the large-deviation results associated with the convergence rate of a nearly optimal AC-SA algorithm presented by Ghadimi and Lan in [SIAM J. Optim., 22 (2012), pp 1469--1492]. Moreover, we introduce a multistage AC-SA algorithm, which possesses an optimal rate of convergence for solving strongly convex SCO problems in terms of the dependence on not only the target accuracy, but also a number of problem parameters and the selection of initial points. To the best of our knowledge, this is the first time that such an optimal method has been presented in the literature. From our computational results, these AC-SA algorithms can substantially outperform the classical SA and some other SA type algorithms for solving certain classes of strongly convex SCO problems. [PUBLICATION ABSTRACT] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1052-6234 1095-7189 |
DOI: | 10.1137/110848876 |