Plethysmographic assessment of vasomotor response in patients with congestive heart failure before and after heart transplantation

Sympathetic vasomotor response is the most important part of the autonomic regulation of circulation, which determines the quality of life. It is disrupted in a number of diseases, particularly in patients with congestive heart failure (CHF). However, experimental evaluation of reflex vasoconstricti...

Full description

Saved in:
Bibliographic Details
Published inBiomedical optics express Vol. 15; no. 2; pp. 687 - 699
Main Authors Mamontov, Oleg V, Zaytsev, Valeriy V, Kamshilin, Alexei A
Format Journal Article
LanguageEnglish
Published United States 01.02.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sympathetic vasomotor response is the most important part of the autonomic regulation of circulation, which determines the quality of life. It is disrupted in a number of diseases, particularly in patients with congestive heart failure (CHF). However, experimental evaluation of reflex vasoconstriction is still a non-trivial task due to the limited set of available technologies. The aim of this study is to assess the dynamics of vasomotor response of forearm vessels due to both the deactivation of cardiopulmonary baroreceptors and cold stress using a newly designed imaging plethysmograph (IPG) and compare its performance with classical air plethysmograph (APG). In both vasoconstriction tests, vasomotor response was assessed as a change in the blood flow rate due to venous occlusion compared to that at rest. Both tests were carried out in 45 CHF patients both before and after heart transplantation, as well as in 11 age-matched healthy volunteers. Prior to transplantation, both APG and IPG showed a significant decrease in vasomotor response in CHF patients due to both tests as compared to the control group. After heart transplantation, an increase in vasomotor reactivity was revealed in both vasoconstriction tests. We have found that both plethysmographic techniques provide correlated assessment of changes in the vasomotor response. In addition, we have found that IPG is more resistant to artifacts than APG. The new IPG method has the advantage of measuring blood flow in a contactless manner, making it very promising for experimental evaluation of vasomotor response in clinical conditions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.511925