Electrostatically Confined Plasma in Segmented Hollow Cathode Geometries for Surface Engineering
A segmented hollow cathode (SHC) geometry was used for electrostatic confinement of plasma, and surface engineering treatments were conducted in this arrangement. The assessed processes included plasma nitriding, reactive deposition of sputtered material, and deposition of carbonaceous films by plas...
Saved in:
Published in | IEEE transactions on plasma science Vol. 39; no. 11; pp. 3028 - 3032 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A segmented hollow cathode (SHC) geometry was used for electrostatic confinement of plasma, and surface engineering treatments were conducted in this arrangement. The assessed processes included plasma nitriding, reactive deposition of sputtered material, and deposition of carbonaceous films by plasma-enhanced chemical vapor deposition with a bipolar pulsed-dc power supply on steel substrates. The treated specimens exhibited uniform surface morphology and deposition layers. Characterization techniques included optical microscopy, scanning electron microscopy with energy dispersive X-ray capability, and X-ray diffraction. The advantages and potential applications of the SHC arrangement are discussed in view of these results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0093-3813 1939-9375 |
DOI: | 10.1109/TPS.2011.2141690 |